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In papers [2] and [6] there are two theorems concerning the conver-
gence almost everywhere, which can be formulated in the following way:

THEOREM (Taylor [2]). If (X, &, u) 18 a o-finite measure space and
{falnen 8 a s6quence of u-a.e. finite measurable real functions defined on X
which converges u-a.e. on X to a u-a.e. finite measurable real function f,
then there exist a monotone sequence {8,},.n of positive numbers tending to
zero and a set B c X such that u(X —E) = 0 and

-0 6n

0

Jor every x € E.

THEOREM (Yoneda [6]). If (X, <%, u) i8 a o-finite measure space and
{falnen 18 @ sequence of u-a.e. finite measurable real functions defined on X
which converges u-a.e. to & u-a.e. finite measurable real function f, then there
6xists a non-negative u-a.e. finite measurable real function d defined on X
such that for every e > 0 there exists an integer n(e) such that for every n > n(s)
and for every v € X we have

(2) Ifa(®@) —f(x)| < ed(x).

In this paper we shall study the convergence almost everywhere
in the more general setting. Suppose that (X, &) is a measurable space
and S < & is a proper o-ideal of sets. We say that some property W holds
J-a.6. on X if the set of all points in X, which do not have the property W,
belongs to .#. Now we introduce the following definitions: (For brevity,
we shall say “convergence in the sense of Egoroff, Taylor or Yoneda”
omitting “with respect to S.)

Definition 1. We say that a sequence {f,},.y of S-a.e. finite &-
measurable real functions defined on X converges to an S-a.e. finite S-meas-
urable real fumction f in the sense of Egoroff if there exists a sequence
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{E,}men Of sets belonging to & such that X —|_J E,, € # and for every

Mme=1
m € N the sequence {f,| E,,},.n converges uniformly to f| E,,.

Remark 1. Observe that in Definition 1 we can assume that the
sequence {E,},..y i8 increasing.

Definition 2. We say that a sequence {f,},.x of #-a.e. finite &-meas-
urable real functions defined on X converges to an J-a.e. finite S-measurable
real function in the senseé of Taylor if there exist a monotone sequence {4,},.»
of positive numbers tending to zero and a set £ ¢ X suchthat X —F e S
and (1) holds for every z € E.

Definition 3. We say that a sequence {f,},ex of #-a.e. finite -meas-
urable real functions defined on X converges to an S-a.e. finite S-meas-
urable real function f in the sense of Yoneda if there exists a non-negative
S-a.e. finite ¥-measurable real function d defined on X such that for
every & > 0 there exists an integer n(e) such that for every n > n(e) and
for every « € X inequality (2) holds.

We shall study the connections between convergence f-a.e. and
convergence in the sense of Egoroff, Taylor and Yoneda.

THEOREM 1. The following statements are equivalent:

(@) {fulnen converges to f in the sense of Egoroff.

(b) {fa}nen converges to f in the sense of Taylor.

(€) {folnenw converges to f in the sense of Yoneda.

Proof. (a) = (b) (see [2]). Let {E,,},..~ be a sequence of &-measurable

sets such that X — | ) E,, € # and for every m the convergence is uniform
m=1 -
on E,,. For each fixed m let us choose an increasing sequence {n,, ,},y of

natural numbers such that
: 1
Ifa (@) —f(2)] < ey
for every x € E,, and for every n>mn,,,. Let {n},y be an increasing
sequence of natural numbers such that
li-m(nt/'”’m,t) = o0

{00
(such a sequence always exists). Put
5 _{1 for 1< n< n,,
"T Ut form_,+1<n<n (t=2,3,..).

If » €k, for some m € N, then there exists ¢, such that »,>n,,,
for t>1¢,. If »>m,, then there exists {>1i, such that n, < n < ny,.
So for such » we have

1
|fo () —f (@)] <m =d.
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Hence (1) holds for every z e J E,,.

m=1

(b) = (a). Let {d,}.ey be a sequence of numbers and let E ¢ X be
a set appearing in the convergence in the sense of Taylor. Put

|fie (@) —f ()] <1}
Ok
for m € N. Then we have | J E, = F and it is not difficult to see that

m=1
on every E,, the convergence is uniform.

(a) = (¢). The proof is essentially the same as in [5]. It suffices only
to observe that if the sequence {f,},.y converges to f in the sense of Egoroff,
then the sequence {f;},.y, defined by

fa(®) = max (—1-, sup | f () —f(m)l) for ne N,
P k=n

converges to zero in the sensc of Egoroff.
(¢) = (a). Let d be a function appearing in the convergence in the

sense of Yoneda. Put E,, = {z: d(¢) < m}. Then we have X — | JE,, € S

M=l
and it is not difficult to verify that on every E,, the convergence is uniform.

Thus the theorem is proved.

From Theorem 1 it follows that for every pair (<, ), where & is
a o-field of subsets of some non-empty set X and # c & is a o-ideal of
sets, all three types of convergence are equivalent. Obviously, each type
of convergence implies convergence f-a.e. Now we study conditions under
which the inverse implication holds. We start with the definition (see [3]).

Definition 4. We say that a pair (¥, f) fulfills the condition (E)
if for every set D € ¥ —f and for every double sequence {B;,}; ..v Of sets
belonging to & and satisfying the conditions

B,,<B,, for j,neN, \JB,;, =DforjeN
na=l

E, =_{a>: for every k> m,

there exist an increasing sequence {j,},.y of natural numbers and a se-
quence {n,},.x of natural numbers such that

NB, . ¢

-]

Remark 2. In [3] it is ;roved that the condition (E) is equivalent
to the possibility of the topologization of the convergence with respect to
S, which is a generalization of the convergence in measure.

THEOREM 2. Suppose that the pair (&, f) fulfills the countable chain
condition (that 18, every pairwise disjoint family of sets belonging to & —S
i8 al most denumerable). Then the convergence S-a.e. of every sequence {f,}nen
of J-a.e. finite S-measurable real functions to an S-a.e. finite &-measurable
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Sfunction f implies the convergence of {f,}.en 10 f in the sense of Egoroff (or
Taylor, or Yoneda) tf and only if the pair (¥, F) fulfills the condition (E).

Proof. Suppose that the pair (&, ) fulfills the condition (E). Let
{falnen converge S-a.e. to f. Put

B, = {w e X: for every k= n, |fi(2) —f(2)| < ]i}

Then E,;, < E;,,, for every j,neN and \UBE,, =E,=X—4

n=1

for every j e N, where A € is a set on which {f,},.x does not converge
to f or some f, or f is not finite.

From the assumption it follows that there exist an increasing se-
quence {j,},y of natural numbers and a sequence {n,},.y of natural num-
bers such that

nEjp-np = El ¢v‘o

D=l

It is not difficult to verify that the sequence {f,|E,},.» converges
uniformly to f|E,.

Suppose that for ordinal numbers a < 7, where 7 < £, we have
found sets E, € & such that {f,|E,},.» converges uniformly to f|E, for
every a< n. If

D, =E,—\J B, s,
a<ln
then {f,}..~ converges to f in the sense of Egoroff, which completes the
proof. Suppose that D, ¢ #. Obviously, D, € &. Put

By = {“’ e D,: for every k> m, | fi(x) —f(w)|<%}.

Then E{", < Hj",, for every j, neN and |J E{", = D, for every

Nl
j € N. Again by assumption we can find an increasing sequence {j{"},.n

of natural numbers and a sequence {n{"},y of natural numbers such that

,,01 E;'g},)mg,) =B, ¢s.

Then the sequence {f,|FE,},.y converges uniformly to f|E,. Since
the pair (%, #) fulfills the countable chain condition, there exists an ordinal
number f< Q such that E,—\JE, €S, s0o X—|JE,es and {f }nen

a<p a<p
converges to f in the sense of Egoroff.
Suppose now that the pair (<, #) does not fulfill the condition (E).
We shall construct a sequence {f, },.y of finite #-measurable real functions
converging f-a.e. to zero which is not convergent in the sense of Egoroff.
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From the assumption it follows that there exist a set De¥ —s5
and a double sequence {B;,}; ..y Of sets belonging to & such that B,,

< B;,,, for j,nelN, U B;, =D for je N, and for every increasing
sequence {j,},.n Of natura,l numbers and for every sequence {np}pen of

natural numbers we have ﬂ B, o ef. Put B ﬂB,‘,,, for j, neN.
k=1

p=1

It is not difficult to see that BM c B%n 4 for j, mneN, | 3,,” = D
. n=1

forjeN,and B,,, , < B, for j,neN. Also B;, c B, ,, so ) Ejp_,,pef
p=1

for every {j,}pen and {m,} ey
For every n e N we put

1/ for wve B,'n —3,4_,,,,, jeN,
T (@) =12 for eD—B,nn,
0 for v e X —D.
Then we have {z: |f,(z)| <1/j} = B, » and, consequently,

n

{w: for every k=, |fi(2)|<— ﬂ B,, =B,

It is not dlfflcult to vemfy that for every r € X
but_-.., | B SRR™. N
limf, (x) = 0.
n—>oo

Suppose now that 4 € & is a set such that {f,|A},.y converges uni-
formly to zero. Then it is easy to see that there exists a sequence {n};cn
of natural numbers such that

A c n Bj,nj'
Jm1

Hence 4 € # and from the fact that J is a proper o-ideal it follows
that the sequence {f,},.y does not converge to zero in the sense of Egoroff.
The proof is completed.

Remark 3. In [1] there is an example showing that convergence
except on a set of the first category does not imply convergence in the
sense of Egoroff with respect to the o-ideal of sets of the first category,
80 the pair (sets having the Baire property, sets of the first eategory)
does not fulfill the condition (E). Another proof of the last fact is given
in [3].

Remark 4. The countable chain condition in Theorem 2 is essential.
The short note [4] includes an example showing that a sequence of functions
defined on an uncountable set convergent everywhere to zero need not
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converge to zero in the sense of Egoroff with respect to / = {@}. So for
the pair (¥, f), where & = 2%, ¥ = {@} and card(X) = ¢, convergence
S-a.e. does not imply convergence in the sense of Egoroff, though this
pair fulfills the condition (E).
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