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1. Introduction. In what follows a partially ordered space is a topol-
ogical space X endowed with a partial order which, regarded as a subset
of X XX, is closed. If the space X is endowed with a closed, reflexive
and transitive relation, then it is called a quasi ordered space. The symbol
2% denotes the space of closed subsets of X with the Vietoris topology
[4]. That is, if {U,,..., U,} is a finite collection of open subsets of X,
then (U,, ..., U,) denotes the set of all 4 e2¥suchthat A c U, u ... v U,
and 4 ~ U; is non-empty for each ¢ =1, ..., n. The family of all such
U4y ..., U,> is a base for the Vietoris topology.

If X is a quasi-ordered space, then 4 (X) denotes the family of
all maximal chains of X. It is known [6] that .#(X) is a subset of 2%.
The set of all closed chains of X is denoted by #(X). We let Max(X)
(resp., Min(X)) be the set of maximal (resp., minimal) elements of X.
If X is compact, then Max(X) and Min(X) are non-empty [6]. If R is
any relation on X we follow the standard terminology:

Rr = {yeX :(y,x)eR}, aR = {yeX:(v,y)eR}

for each z¢X. However, in the case of a quasi-order @ we shall also write
wgy_when (,y)e® as well as L(z) = Qzr and M(x) = zQ, for each
zeX. If A c X, then

L(A) = (J{L(x):xed}, M(A)=U{M(z):xed}.

Two quasi-orders P and @ on X are said to be chain equivalent if
PoP'=@QouQ . Finally, if R is a reflexive relation- on X, then X
denotes the subfamily of 2* each of whose members contains an R-least
element.

* Both authors were partially supported by a grant from the National Science
Foundation.
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Recently Franklin and Wallace [3] have asked three questions on
relations in topological spaces which we are able to answer in whole or
in part. '

P 555. If X is a compact quasi-ordered Hausdorff space, is the set
of maximal members of X a closed subset of 2%9%

P 556. If X is a compact partially ordered space, is # (X) a closed
subset of 2%9

P 557. If X is a compact quasi-ordered Hausdorff space with quasi-
order Q, under what conditions does Q contain a closed partial order which
18 chain equivalent to Q?

2. Problem 555. The theorem which follows shows that the answer
to this question is in the negative, even if the relation is a closed partial
order. In fact, in this setting a complete answer is easy to establish.

THEOREM 1. Let X be a compact partially ordered space and let Xy
denote the set of maximal members of X. Then Xy is a closed subset of 2%
if and only if Min(X) is closed and the mapping ¢ : Min(X) — 2% defined
by p(x) = M(x) 18 continuous.

Proof. We note first that

Zy = {M(x) : xeMin(X)} = ¢(Min(X)).

If Min(X) is closed and ¢ is continuous, then 2 is compact and
hence closed in 2%. Conversely, if Xy, is closed, suppose e, is a net in
Min(X) which converges to eeX; then the net M(e,) in 2 has a cluster
point M (e,), where e; eMin(X). Since the partial order has a closed graph,
it is easy to see that e, = e. This proves that Min(X) is closed and that ¢
is continuous.

3. Problem 556. For this problem it is convenient to use the fol-
lowing result of Nachbin {5]:

THEOREM 2. Let X be a compact partially ordered space and suppose
that F, and F, are closed subsets of X such that x, non < x, whenever x,eF,
and x,eF,. Then there exist disjoint open sets U, and U, such that F, < U,
= L(U,) and F, < U, = M(U,).

LEMMA 3.1. If X is a partially ordered space, then ¥ (X) is a closed
subset of 2%.

Proof. If 4¢2X—#%(X), then A contains elements a, and a, which
are not comparable. Since the partial order has a closed graph there exist
open sets U, and U, containing a, and a,, respectively, and such that
no element of U, is comparable with any element of U,. It follows that
Ae(U,, U,y X> but that no chain is a member of (U,, U,, X), and
hence that €(X) is closed.
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A partially ordered set S is order-demse provided whenever a and b
are members of § and a < b, then there exists ceS with a < ¢ < b.

THEOREM 3. Let X be a compact, order-dense partially ordered space.

Then #(X) is a closed subset of 2% if and only if Max(X) and Min(X)
are closed sets.

Proof. If Max(X) is not closed, then there exists a net ¢, in Max (X)
with ¢, > aeX—Max(X). For each a there exists M,e#(X) with
¢, = sup M,. By Lemma 3.1 we know that #(X) is closed in 2%, and,
since 2% is compact, the net M, has a subnet donverging to a closed chain C.
Since the partial order has a closed graph, it follows that supC = a and
hence C is a member of the closure of .#(X) but not of .#(X). A dual
argument applies if Min(X) is not closed.

Conversely, suppose that Max(X) and Min(X) are both closed sets.
In view of Lemma 3.1 it suffices to show that if C¢%(X)—.#(X), then C
lies in an open set of 2% which is disjoint from .#(X). Since C is compact,
it has a supremum and an infimum which it contains. Since C is not
maximal, we distinguish three cases: either supCe¢X—Max(X), or inf
CeX—Min(X), or ¢ = C, v C,, where C, and C, are closed chains and
there exists an element which is strictly between supC, and infC,.

In the first case we note that C and Max (X) are closed sets satisfying
the hypotheses of Theorem 2 and hence there is an open set U with

Cc U=L(U) c X—Max(X).

Accordingly, Ce{U), but sinte every maximal chain meets Max(X),
it follows that (U) and #(X) are disjoint. A dual argument applies
in the second case.

In the third case we again apply Theorem 2. There exist disjoint
open sets U, and U, such that 0, =« Uy = L(U,) and C, =« U, = M(U,)
so that Ce{(U,, U;>. But no member of .#(X) can lie in (U,, U,) since
the maximal chains of a compact, order-dense partially ordered space
are connected [6].

The hypothesis of order-density is essential to Theorem 3. For in
the Hilbert cube I let

T ={t:tw =0if m #n and 0 <t, <2™"}

and let § = | {T.} v {1}. We give S the coordinatewise partial order
n=1

inherited from I”: # < y if and only if #, < y, foreachn =1, 2, ..., Then
8 is a compact partially ordered space and Max(S8) and Min(8) are single-
tons. The maximal chains of § are all of the form T, v {1} and it is a routine
exercise to verify that {0, 1} lies in the closure of .#(8).

As a matter of fact § is actually a lattice, but the join operation is
not continuous. If it is assumed that § is a topological lattice; then no
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assumptions of order-density are necessary in order to guarantee that
A (8) is closed.

THEOREM 4. If S is a compact topological lattice, then #(S) is a closed
subset of 25.

Proof. By Lemma 3.1 it suffices to show that if Ce%(8)—A#(8),
then C has a neighborhood disjoint from .#(8). As in the proof of The-
orem 3 we distinguish three cases.

If supC < 1, then C is contained in an open set U such that U = L(U)
and 1¢S— U, by Theorem 2. Thus Ce{U) and no maximal chain can
be a member of (U). The case 0 < infC follows in the same way. It
remains to consider the case where C = (€, v C;, where C, and C, are
members of #(S) and there exists te8 such that supC, < ¢t < infC,.
If each neighborhood of ¢ meets .#(S), then there exists a net M, in
(8) such that M, — C in the space 2°. By Theorem 2 there are disjoint
open sets U, and U, such that C, =« U, = L(U,) and C, =< U, = M(U,),
and hence the net M, is eventually in (U,, U,>. That is, eventually
M,= M, M,,, where M,, - C, and M,, — C,. Since the partial
order is closed, a simple argument shows that sup M,, —supC, and
inf M,, — intC,. Consequently, if we define

ta == (Sup MG,O A\ t) A inf Ma,l,

then ¢, converges to (supC,vi)AinfC, = ¢. In particular, ¢, is eventually
in the complement of M,. But it is clear from the definition of ¢, that

sup M, , <1, < inf M,,,

so that M, v {t,} is a chain, contrary to the maximality of M,.

4. Problem 557. The following result is contained in the dissertation
of Franklin [2]:

THEOREM 5. Let X be a compact Hausdorff space. Then the relation
R c X XX is closed if and only if the set function x — xR is upper semi-
continuous and has closed point-images. )

If X is a quasi ordered space, we write E(zr) = L(x) ~ M(x) for
each reX.

THEOREM 6. Let X be a compact quasi ordered Hausdorff space with
quast order Q. Then @ contains a closed chain equivalent partial order P
if and only if for each xeX there exists a simple order I, on E(x) such
that

(i) Ie = Ty if yeE(a),

(ii) the set fumction = — (2Q—Qx) v xI, is upper semi-continuous
and has closed point-images.
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Proof. If (i) and (ii) are satisfied, let (v, y)eP if and only if
ye(2Q —Qx) v xl. It is routine to verify that P is a partial order, P < @
and P and @ are chain equivalent. That P has a closed graph follows
from Theorem 5. Conversely, the chain equivalence of P and ¢ implies
that each set E(x) is a P-chain; letting I = P ~ (E(x) x E(x)) we have
(i), and (ii) follows from Theorem 5.

Under certain conditions we can assert the uniqueness of the partial
order P. First we establish

LEMMA 7.1. Let Q be a closed quasi order on the compact space X and
suppose Q contains a closed chain equivalent partial order P. Suppose that
xQ v Qx is connected, for each reX. Then

(i) E(x) is a (possibly degenerate) arc (') which is also a P-chain,

(ii) of my and 1, are the P-maximal and P-minimal elements, respec-

tively, of E(x), then m, and l, are the endpoints of E(x),

(iii) ¢f 2Q—Qx is non-empty (resp., Qr—xQ is non-empty), then
mg = (2Q —Qx) ~ E(2) (resp., I = (Qv— Q) ~ E(x)).

Proof. If zeX, then E(z) is by Theorem 6 a P-chain and E(z) is
closed since E(x) = xQ ~ Qx. Note that

(%) xQ v Qr = m, P v E(x) v Pl,

which is a connected set by hypothesis. If E(z) is not degenerate, then
m,P and Pl, are disjoint closed sets and hence E(x) is connected. Since
E(x) is a continuum and a chain, it is an arc. The assertion (ii) is clear.
To verify (iii) we may assume that x = m,; then xQ —Qx = «P—x,
so that by (x) and the connectedness of () v Qxr we may conclude

2Q—Qxr = xP—x = xP.
Therefore
(2@ —Qx) ~ E(x) = 2 = m,,

and the statement for I, follows by a dual argument.

THEOREM 7. Let Q be a closed quasi-order on the compact space X
and suppose that xQ w Qx is connected and that E(x) # xQ v Qx for each
zeX. If Q contains a closed chain equivalent partial order P, then P is unique.

Proof. For if P and P’ are distinct closed partial orders which are
contained in ¢ and are chain equivalent to ¢, suppose (z,y)eP—P’.
Then (y,z)eP’ = @ and hence yeE(x). By Lemma 7.1 the arc E(x) is
a chain relative to both P and P’. It follows from (iii) of Lemma 7.1
that P ~ (E(z) x E(x)) = P’ ~ (E(x) X E(x)), a contradiction.

(!) An arc is a continuum with exactly two non-cutpoints.
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If the spaces under consideration are taken to be metric spaces,
then the notion of a radially convex metric sheds light on the existence
of closed chain equivalent partial orders. If X is a space with metric o
and P is a partial order on X, then g is radially convexr (with respect to P)
provided whenever x < y < 2zin X it follows that o(x, ¥) + o(y, 2) = o(z, 2).
The following basic theorem on such metrics is due to Carruth [1].

THEOREM 8. FEvery compact metric partially ordered space admits
a radially convexr metric.

THEOREM 9. Let Q be a closed quasi-order on the compact metric
space X, and let P be a partial order on X such that P = Q, P is chain equi-
valent to ) and Pz is closed for each x ¢ X . Suppose in addition that Min (X, P),
the set of P-minimal elements of X, is a closed set. Then P is closed if and
only if X admits a metric which is radially convexr with respect to P.

Proof. If P is closed then the existence of a radially convex metric
follows at once from Theorem 8. Conversely, suppose X admits a metric
¢ which is radially convex with respect to P. Let z, and y, be nets in X
such that z, > x,y, >y and (x,,9,)eP for each a. It is sufficient to
show that (x, y)eP. Since P is chain equivalent to @ and @ is closed, we
have (x,y)eQ or (y,x)eQ. Since the sets Px, are closed, there exists
n,eMin(X, P) ~ Px,, and since Min(X, P) is closed, the net n, has
a cluster point neMin(X, P). Since @ is closed, we infer that (n, x)eQ
and (n,y)eQ. Now

e(n, 2) = limo(n,, 2,) <limp(n,, ¥y.) = o(n,v)

since o is radially convex, and hence (z, y)eP.

-

We give one more theorem on the existence of closed chain equi-
valent partial orders which is independent of what has gone before,

THEOREM 10. Let Q be a closed quasi-order on the compact space X.
let 8 ={xeX:E(x) #x} and suppose the following three conditions are
satisfied:

(i) X— 8 is dense in X,

(ii) the mapping x — (2Q o Qx) is continuous,

(iii) of @ and y are distinct elements of X and (x, y)eQ, then there exist
disjoint neighborhoods U and V of x and vy, respectively, such that either

(iiia) (@ u @) ~A(UXV)<Q or

(iiib) (@ w @) A (UX V) < Q1.

Then Q contains a closed chain equivalent partial order.

Proof. Define

P =@ ~ {(x, y); (ilia) holds}.
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Since (iiia) is satisfied vacuously on the diagonal of X, it is clear
that P is reflexive. Moreover, if (iiib) holds for (z, y), then (y, ) eP and
hence Pu P! =@Q w Q'. To prove that P is asymmetric, suppose
(z, y) and (y, ) are members of P with # +# y. Then disjoint open sets U
and V may be chosen so that xeU, yeV and

Q@u@ )~ (UxV)cQ Q.

Moreover, by (ii) the open sets U and V can be chosen so that if
x' €U, then there exists

Y eV A (2'Q v Qx')
and hence

(@, 9)e(UXV)~n (@@ )@@,

i.e, y eE(2'). But by (i) we may choose #'¢U such that E(2’) = «'.
This contradicts the assumption that U and V are disjoint.

To see that P is transitive, suppose (x, y)eP and (y, 2)eP, where
z,y and z are all distinct. Then there are neighborhoods U, V and W
of x, y and 2, respectively, which are mutually disjoint and are such that

Q@uO@HA(UXxV)cQ, Qu@)n(VXW)cq.
By the transitivity of ¢, we -infer
Q@u@ )~ (UxW)=@

and hence (z, 2)eP.

It remains to prove that P is closed. Let (x,, ¥;) be a net in P with
(®ay Ya) = (x,y); then (z,y)eQ since @ is closed and we may assume
¢ #y. Choose U and V according to (iii). Eventually (x,,y.,)eUXV
and since U and V are disjoint, we have (#,, ¥,) eP—P~'. Thus (Q v Q') ~
A~ (Ux V) cannot be contained in Q~' and there exists '¢e U— 8 and
Y eV with (2, 9')e@ — Q1. It follows that (iiia) must occur and hence
(z,y)eP. The proof is complete.
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