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1. Introduction. In his book on Riemannian geometry, E. Cartan singled
out the real space forms among all Riemannian manifolds by a characteristic
property, called the axiom of planes, which basically is a condition to admit
sufficiently many totally geodesic submanifolds. Since then, many differential
geometers obtained weaker conditions of this nature which are typical of
some of the most primitive spaces in their field. In this survey we will discuss
as such the real and complex space forms, the conformally flat spaces and
the Bochner—Kaehler spaces being determined among all Riemannian or
Kaehlerian manifolds by suitable axioms of submanifolds. By a real space
form, a complex space form, a conformally flat space and a Bochner—Kaehler
space we mean a Riemannian manifold of constant sectional curvature, a
Kaehlerian manifold of constant holomorphic sectional curvature, a Rieman-
nian manifold which is locally conformal to a Euclidean space and a
Kachlerian manifold with identically vanishing Bochner curvature tensor,
respectively. ' '

2. Some basic facts on Riemannian manifolds. Let M be a Riemannian
manifold of dimension m with metric tensor g, corresponding Levi-Civita
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connection V¥, Riemann—Christoffel curvature tensor R, Ricci tensor S and
scalar curvature ¢. Then M is called a space of constant curvature or a real
space form if the sectional curvature

21 k(y) =R(X, Y; Y, X)

for the plane section y determined by orthonormal tangent vectors X, Y at a
point p of M is a constant for all plane sections y of T, M and for all points
p in M. The sectional curvature k(y) is the Gauss curvature at p of the
surface consisting of the geodesics of M which pass through p and which are
tangent to y. By the Lemma of Schur [66], if at each point p of a
Riemannian manifold M with dimension m > 2 the sectional curvature k(y)
depends only on the point p, then M is a real space form. Also the following
result is well known (see, e.g., [40]).

THEOREM 2.1. The Riemann—Christoffel curvature tensor of a space of
constant curvature ¢ has the typical form

(2.2) R(A, B; C, D) =c{g(A, D)g(B, C)—g(A, C)g(B, D)},

where A, B, C and D are arbitrary tangent vector fields on M.

The following characterization for the real space forms is due to Cartan
[7]:

THEOREM 2.2. Let M be a Riemannian manifold of dimension > 2. Then
M is a space of constant curvature if and only if

(2.3) R(X,Y;Z,X)=0

for all orthonormal vectors X, Y and Z at any point of M.

A space of zero curvature is said to be locally flat or locally Euclidean.
Let o be a positive function on M. Then

24 g* =d’g

is a new metric tensor on M which assigns to any two vectors X and Y at
any point p of M the same angle as g and for which the relation between the
lengths of a vector X measured with g* and g is given by

(2.5) I XI1* = o (p) I XII.
Such a transformation of metric is called conformal. Putting
1 4
. L =—-———S(A, B A, B),

we define the Weyl conformal curvature tensor W of M by
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The corresponding (1, 3)-tensor is invariant under all conformal transforma-
tions of M. For m =3, W vanishes identically. For m = 3, a meaningful
conformal invariant tensor W is defined by

(2.8) W(4, B, C) =(V,L)(B, CO)—(Vs L)(4, C).

A Riemannian manifold M is said to be a (locally) conformally flat space or a
(locally) conformally Euclidean space if its 1metric g is conformally related to a
metric g* which is locally flat. By the existence of isothermal coordinates,
every surface is (locally) conformally flat. Regarding the conformal flatness of
manifolds of dimension > 2 we have the following result of Weyl [82]:

THEOREM 2.3. A necessary and sufficient condition for a Riemannian
manifold of dimension m > 3 (respectively, m = 3) to be conformally Euclidean
is that its Weyl conformal curvature tensor W (respectively, its tensor W)
vanishes identically.

The following characterization for the conformally Euclidean spaces is
due to Schouten [65]:

THEOREM 24. Let M be a Riemannian manifold of dimension > 3. Then
M is conformally flat if and only if

(2.9) R(X,Y;Z,U)=0

for all orthonormal tangent vectors X, Y, Z and U at any point of M.

Real space forms, the products of real space forms with curves and the
products of two real space forms of opposite curvature are examples of
conformally Euclidean spaces.

If the Ricci tensor of a Riemannian manifold M is proportional to its
metric tensor, say

(2.10) S=14g

for some function A on M, then M is called an Einstein space. This condition
is automatically satisfied for every surface. For m > 3 the function 4 is
automatically constant. Furthermore, all real space forms are Einsteinian.
For manifolds of dimension 3, conversely, every Einstein space is a space of
constant curvature. For dimension > 3, the real space forms can be charac-
terized as the conformally flat Einstein space.

A Riemannian manifold M is called locally symmetric if its curvature
tensor R is a covariant constant (VR = 0). A complete locally symmetric space
is a symmetric space, i.e., a Riemannian manifold M such that for each point
p of M there exists an involutive isometry of M having p as an isolated fixed

point.
3. Some basic facts on Kachlerian manifolds. Let M be a Kaehlerian

manifold of real dimension 2m with metric tensor g, corresponding Levi-
Civitd connection V, complex structure J, Riemann—Christoffel curvature
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tensor R, Ricci tensor S and scalar curvature g. The sectional curvature k(y)
of M for a plane section y which is holomorphic, that is, which is invariant
under the action of J, is called a holomorphic sectional curvature. A Kaehle-
rian manifold of constant holomorphic sectional curvature is called a com-
plex space form. Every complex space form is an Einstein space. Besides a
complex version of the Lemma of F. Schur, also the following result is well
known (see, e.g., [40]):

THEOREM 3.1. The Riemann-Christoffel curvature tensor of a Kaehlerian
manifold M of constant holomorphic sectional curvature ¢ has the typical form

(3.1)
R(4, B; C, D) =% {g(4, D)g(B, C)-g(4, )¢ (B, D)+g(J4, D)g(UB, O)

—g(JA, C)g(JB, D)+24(4, JB)g(JC, D)},

where A, B, C and D are arbitrary tangent vector fields on M.

THEOREM 3.2. A Kaehlerian manifold of real dimension > 4 is a complex
space form if and only if it has a constant antiholomorphic sectional curvature.

‘Here by an antiholomorphic sectional curvature we mean the sectional
curvature k(y) for antiholomorphic (anti-invariant, totally real) plane sections
7, that is, plane sections y which stand orthogonal to their image under J.
Let X and Y be orthonormal tangent vectors at some point p of M which
span a totally real plane section m of Tplﬁ (that is, such that g(X, X)
=g(Y,Y)=1and g(X, Y) =g(X, JY) =0). Then the totally real bisectional
curvature B(n) is defined by

(3.2) B(n) = R(X,JX;JY, Y),

and Houh [36] proved the following

THEOREM 3.3. A Kaehlerian manifold is a complex space form if and only
if it has a constant totally real bisectional curvature.

The following characterization for the spaces of constant holomorphic
sectional curvature was obtained by Ogiue [56] and Nomizu [50].

THEOREM 3.4. A Kaehlerian manifold M is a complex space form if and
only if
(3.3) R(X,Y;JX,Y)=0
Jor all orthonormal vectors X, Y which span a totally real plane section of
T,M at an arbitrary point p of M.

Correspondingly to Theorem 2.2 we proved [78] the following

THEOREM 3.5. A Kaehlerian manifold M of real dimension >4 is a
complex space form if and only if

(3.4) R(X,Y;Z,X)=0
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for all orthonormal vectors X, Y and Z at an arbitrary point p of M, which
span a totally real subspace of T,M.

The complex analogue for Kaehlerian manifolds of Weyl’s tensor for

Riemannian manifolds is given by the Bochner curvature tensor B defined by
(3.5 B(P,Q;C, D)

1

=R(P, Q; C, D)—

2(m+2)
+9(P, D)S(Q, C)—g(P, O)S(Q, D)+¢(JQ, C)S(JP, D)
—9(JQ, D)S(JP, C)+g(JP, D)S(JQ, C)—g(JP, C)S(JQ, D)
—29(JC,D)SUJP, Q)—29(JP, Q)S(JC, D)}

0 |
tami )me2) 9@ O9(P. D)=g(P, O)g(Q, D)

+9(JQ, O)g(JP, D)—g(JP, C)g(JQ, D)
+2(P,JQ)9(JC, D)},

where P, Q, C and D are tangent vector fields on the Kaehlerian manifold
(see, eg., [S], [86], [85], [70]). A Kaehlerian manifold with identically
vanishing Bochner tensor is called a Bochner—Kaehler manifold and also is
said to be Bochner flat. Correspondingly to Theorem 2.4, Yano and Sawaki
[91] proved the following

THeOREM 3.6. A Kaehlerian manifold M of real dimension > 6 is Bochner
fat if and only if

(3.6) R(X,Y;Z,U)=0

for all orthonormal vectors X, Y, Z and U at an arbitrary point p of M, which
span a totally real subspace of T, M.

All complex space forms and all the products of two complex forms of
opposite curvature are Bochner-Kaehler manifolds, as a matter of fact these
are the only Bochner flat spaces with constant scalar curvature. The complex
space forms can be characterized as the Bochner-Kaehler Einstein space.

{9(@, O)S(P, D)~g(Q, D)S(P, C)

4. Some fundamental types of submanifolds. Let N be an n-dimensional
submanifold of an m-dimensional Riemannian manifold M. Then g =m—n is
the codimension of N in M. Let g’ denote the metric tensor induced on N
from g. By ¥, R/, etc., we denote the corresponding Levi-Civita connection,
Riemann—Christoffel curvature tensor, etc., of N.

For vector fields X and Y tangent to N, the formula of Gauss gives the
decomposition of the vector field FyY, which is tangent to M, in its
components which are tangent and normal, respectively, to,the submanifold:

4.1) VY = Py Y+h(X, Y).
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The normal bundle valued symmetric 2-form h on N is called the second
Sfundamental form of N in M. For vector fields X and n which are tangent
and normal, respectively, to N, the formula of Weingarten gives the decompo-
sition of the vector field Vyn, which is tangent to M, in its components
which are tangent and normal, respectively, to the submanifold:

4.2 Vxn=—A,X+Vxn.

The symmetric linear transformation A, of the tangent space T,N of N at
each of its point p is called the second fundamental tensor of N with respect
to . One has the following relation between the second fundamental form h
and the second fundamental tensors A:

q
(4.3) h(X, Y)= ) g(A4, X, Y),
t=1
where &,, &,, ..., &, is a local field of orthonormal frames of the normal
bundle TN of N in M. Let & be a unit normal vector of N at some point p.
Then, since A, is self-adjoint, there exist orthonormal tangent vectors

E\,E,, ..., E, of N at p which are eigenvectors of A,, i, such that
(4.4) A: Ei = )'l' El'
for real numbers 4;,, ie{l,2,...,n}. 4 and E; are called the principal

curvatures and the principal directions, respectively, of the normal vector ¢ of
N at p. For a surface N in E3, A, and 4, are the extremal values of the
curvatures of the normal sections of N at p, that is, of the curves in which
the planes through ¢ intersect N. The connection P+ is called the normal
connection of N in M. This is a metric connection in T*N with respect to
the metric induced from g. If at each point p in N the first normal space of
N in M coincides with the normal space of N in M, then, similarly to the
uniqueness theorem for the Riemannian connection, the normal connection
V1 can be characterized as the unique metric linear connection in TN
whose torsion tensor is zero [52]. The corresponding curvature tensor RY,

(4.5) RY(X, Y)n =Py Vyn—VyVxn—Vixn,

is called the normal curvature tensor of N in M. The normal connection is
said to be flat or trivial if R* vanishes identically. A unit normal vector field
¢ on N is said to be parallel (in the normal bundle) if

(4.6) V=0

for all X tangent to N. For submanifolds N of an arbitrary Riemannian
manifold M, the normal connection is flat if and only if there exist locally g
mutually orthogonal parallel unit normal vector fields on N. For submani-
folds of a conformally flat space, the flatness of normal connection is
equivalent to the simultaneous diagonalizability of all second fundamental
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tensors [ 10]. The second fundamental form h and the normal connection V*
describe the extrinsic properties of N in M.

Next we state the fundamental equations for a submanifold N of a
Riemannian manifold M. These are the equations of Gauss:

@7 R(X,Y;Z,W)=R(X,Y;Z, W)
+g(h(X, Z), h(Y, W))—g(h(X, W), h(Y, Z)),

the equations of Codazzi:.

(4.8) R(X, Y; Z, n) =g((VxW(Y, 2), n)—g((Py H(X, Z), n),
and the equations of Ricci:
(49) R(X’ Y,r” C) = Rl(Xa Y; n, C)—g,([Arp AC] X, Y)a

where X,Y,Z, W and 5, are vector fields tangent and normal to N,
respectively, Vyh is the covariant derivative of van der Waerden—Bortolotti
of h with respect to X, that is

(4.10) (Vxh)(Y, Z) = Vx(h(Y, Z2))-h(Vy Y, Z)-h(Y, Vx2),

and [A4,, A;] is the Lie bracket of 4, and A; ([9], [15]).

For n-dimensional submanifolds N of a (real) 2m-dimensional Kaehle-
rian manifold M distinctions are made according to the behaviour of the
tangent bundle TN of N with respect to the complex structure J of M. If
TN is invariant under the action of J (J(TN) = TN), then N is called a
Kaehlerian (holomorphic, complex, invariant) submanifold of M (see [57]).
Endowed with the restriction of J to TN, in this case N also becomes a
Kaehlerian manifold, and so the dimension of N is necessarily even. If J
transforms TN into the normal bundle TN (J(TN) < T:N), then N is
called a totally real (antiholomorphic, anti-invariant) submanifold of M. An
immediate consequence of this definition is that necessarily 1 < n < m. For a
normal vector field ¢ on a totally real submanifold N of M, J¢ can be
decomposed as

4.11) JE = PE+fE,

where P¢ and f¢ denote the tangential and normal components of J¢,
respectively. f determines an f-structure in T* N, namely an endomorphism
of the normal bundle which satisfies f3+ f=0. If

4.12) (Dx )& :=Vx fE—fPxE=0

for all tangent vector fields X on N, then the structure f is said to be
parallel [87]. The submanifolds N of M for which TN can be decomposed
into the direct sum of a holomorphic distribution 2 and orthogonal antiho-
lomorphic distribution 2+ are called CR-submanifolds. If 2 # {0} and

3 — Colloquium Mathematicum t. 54, z. 2
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2* # {0}, then N is called a proper CR-submanifold. CR-submanifolds are
CR-manifolds in the sense of [32]. The real hypersurfaces of a Kaehler space
constitutes examples of proper CR-submanifolds [88].

After this short survey of formulas and definitions for submanifolds of
Riemannian and Kaehlerian spaces, we now briefly discuss different types of
submanifolds which appear in the axioms of submanifolds in Riemannian
and Kaehlerian geometry. In some sense, the most elementary submanifolds
N of a Riemannian manifold M are the totally geodesic ones. They can be
thought of as the submanifolds N of M such that in order to travel from one
point in N to another point in N by the shortest way in M one must not
leave N. More precisely, they are the submanifolds N of M whose geodesics
are also geodesics in M. By the formula of Gauss one may see that the
totally geodesic submanifolds N of M are characterized by the vanishing of
their second fundamental form h. The totally geodesic submanifolds of
Euclidean spaces E™ spheres S™ and real projective spaces RP™ were
classified by Cartan [7]. Wolf [83] classified the totally geodesic submani-
folds of the complex projective spaces CP™, the quaternionic projective
spaces HP™ and the Cayley plane OP2. Together these results give complete
information on the totally geodesic submanifolds of the Euclidean spaces and
the symmetric spaces of rank 1. The rank of a symmetric space M is the
maximal dimension of flat totally geodesic submanifolds of M. Totally
geodesic submanifolds of symmetric spaces of arbitrary rank were studied by
Chen and Nagano [16] by their (M,, M_)-theory. A normal direction ¢ on
a submanifold N in a Riemannian manifold M is said to be geodesic if

(4.13) A, =0.

Thus N is totally geodesic in M if and only if all normal sections £ are
geodesic. By Yano and Kon [87], Hendrickx and one of the authors [34],
the parallelism of the f-structure in the normal bundle of a totally real
submanifold N of a Kaehlerian manifold M is equivalent to the property
that N is geodesic with respect to all normal sections of T+ N\J(TN).

After the totally geodesic submanifolds, in some sense, the most simple
submanifolds are the totally umbilical ones. A recent survey on totally
umbilical submanifolds was given by Chen [14]. Consider a hypersphere
S"(r) of radius r which is centered at the origin of E"*!. Let ¢ be the inner
unit normal vector field of S"(r):

lu+1 a
4.14) E=—-—=Y x,-a,

where 0/0x; is the natural frame field of E**!. The covariant derivative Vy ¢
of ¢ with respect to a vector

nt+1 a

4.15) X = i; X
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tangent to S"(r) is given by

u+1X a 1n+1
(4.16) VX€=(.Z -’(—E) Z Jax !

1u+1 ax a 1n+l a

BT Rt R R T~
1n+l a 1
=R X

Of course, since S"(r) is of codimension 1 in E"*! and é is of unit length,
V& has no component normal to S"(r). From (4.16) and the formula of
Weingarten we have

1
4.17) A X = ;X
for all vectors tangent to S"(r). Thus
1
4.18) A, =-1d,

,
where Id denotes the identity transformation. Consequently,

1
4.19) h(X, ¥) =g (X, V)¢.

In general, for any submanifold N of a Riemannian manifold M,
1
(4.20) H= ;trace h

is a canonically determined normal vector field on N in M. It is called the
mean curvature vector field of N. With respect to an orthonormal frame field
¢ it is given by

1 q
(4.21) H=- Y (trace 4;)¢,.
t=1
A submanifold N of M is said to be minimal if H vanishes identically. Every
complex submanifold of a Kaehlerian manifold is minimal. In the present
situation, for $"(r) in E"*!, we see from (4.18) that

4.22) trace A; = —,
so that

1
(4.23) H = - E.
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Combining this with (4.19) we obtain
4.24) h(X,Y)=g'(X, Y)H.

In general, a submanifold N of a Riemannian manifold M is called totally
umbilical if it satisfies (4.24). Clearly, the totally umbilical minimal submani-
folds N of M are the totally geodesic submanifolds of M. From (4.24) we see
that for each unit normal ¢ on a totally umbilical submanifold the second
fundamental tensor A4, is proportional to the identity transformation. In
other words, for a totally umbilical submanifold every A, has an eigenvalue
with multiplicity n; in particular, for a totally geodesic N every A, has 0 as
the only eigenvalue. Since the mean curvature ||H|| = 1/r is constant and the
codimension is 1, it is clear from (4.23) that for any sphere S"(r) in E"*! the
normal component of Fy H vanishes for all X tangent to S"(r), i, that

(4.25) ViH = 0.

In general, the totally umbilical submanifolds N of a Riemannian manifold
M with parallel non-vanishing mean curvature vector H are called extrinsic
spheres. For arbitrary Riemannian manifolds the extrinsic spheres are the
natural analogues of the ordinary spheres in Euclidean spaces ([51], [54]).
The totally umbilical submanifolds of Euclidean spaces are classified as
follows [7]: an n-dimensional submanifold N of a Euclidean space E™ is
totally umbilical if and only if N is either an n-plane or an ordinary n-sphere.
The classification of totally umbilical submanifolds in other real space forms
is very similar to the one in E™ (see [9]). In particular, totally umbilical
submanifolds of real space forms are themselves also real space forms.
Totally umbilical submanifolds in the other symmetric spaces of rank 1 are
classified in [18], [13] and [12]. For instance, Chen and Ogiue [18] proved
the following:

A totally umbilical submanifold N of dimension n> 2 in a complex
projective space CP™ is one of the following:

() a complex projective space CP™? holomorphically immersed in CP™
as a totally geodesic submanifold,

(i) a real projective space RP" immersed in CP™ as a totally real and
totally geodesic submanifold,

(i) a real projective space RP" immersed in CP™ as a totally real
extrinsic sphere.

In particular, totally umbilical submanifolds of complex space forms are
real space forms or complex space forms. By combining results of Chen and
Nagano [16] and Verheyen and one of the authors [76], the (real) dimension
of an extrinsic sphere in a positively (or negatively) curved Kaehlerian
manifold M must be smaller than the complex dimension of M. In this
context, Blair and Chen [4] showed that there exist no totally umbilical
proper CR-submanifolds in any positively (or negatively) curved Kaehlerian
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manifold. A Riemannian manifold is called an intrinsic sphere if it is locally
isometric to a standard sphere in a Euclidean space. It seems natural to ask
when an extrinsic sphere is an intrinsic sphere. In this respect we mention the
following result of Chen [11]. Let N be a complete simply-connected even-
dimensional submanifold with flat normal connection in any Kaehler mani-
fold. Then, if N is an extrinsic sphere, then N is an intrinsic sphere.

A submanifold N of a Riemannian manifold M has the parallel second
fundamental form if

(4.26) Vh = 0.

For a totally umbilical submanifold N, (4.26) holds if and only if N is either
totally geodesic or if N is an extrinsic sphere [31]. The submanifolds with
parallel second fundamental form can be characterized as the extrinsic locally
symmetric submanifolds, that is, roughly speaking, as the submanifolds which
are locally invariant under the reflections into their normal spaces at each of.
their points ([29], [69], [68]). Of course, extrinsic symmetric submanifolds
also are (intrinsic) symmetric spaces. The classification of these submanifolds
in real space forms was given by Ferus [26]-[28] and by Backes and
Reckziegel [1], and Takeuchi [72], Nakagawa and Takagi [49], and Kon
[41]. For studies of (nonzero) isotropic submanifolds with parallel second
fundamental form in symmetric spaces, see [47], [48], [53] and [37]. The
latter submanifolds have the property that every geodesic in the submanifold
is a circle in the ambient space [53], and examples in real space forms are
given by the submanifolds with planar geodesics (see [59], [62], [35]). Here
by a (A-)isotropic submanifold N of a Riemannian manifold is meant a
submanifold such that for a given A4 > 0, for all unit tangent vectors X at all
points p of N we have

(4.27) lh(X, X)I| =4,

where ||Z]| = g (&, £)'/? (see [58]).
A submanifold N of a Riemannian manifold M satisfies the classical
Codazzi equation if for all tangent vector fields X, Y and Z on N we have

(4.28) (Px (Y, Z) = (Py B)(X, 2).

In particular, this is evidently the case whenever h is parallel. Examples of
submanifolds satisfying the classical Codazzi equation are given by all
Kaehler submanifolds in" any complex space form [69].

After the umbilical submanifolds, in some sense, the most simple submani-
folds are the quasiumbilical ones. According to Chen and Yano [23], [24],
a hypersurface N of a Riemannian manifold M is said to be quasiumbilical if
it has a principal curvature with multiplicity > n—1, i.e, if the principal
curvatures of N are given by u, 4, ..., 4, where 4 occurs n—1 times (see also
[20]). Obviously, this definition is meaningful only for hypersurfaces with
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dimension > 3. It is clear that quasiumbilicity may be considered as a
generalization of umbilicity, in which case u = A. On the other hand, the
notion of quasiumbilicity may be considered as a generalization of the notion
of cylindricity, the principal curvatures of a cylindrical hypersurface C of a
Euclidean space E"*! being given by u, 0, ..., 0, where 0 occurs n—1 times.
A cylindrical hypersurface or, shortly, a hypercylinder C of E**! is obtained
by moving parallelly an (n— 1)-dimensional linear subspace of E"*! along
some curve x. In particular, if » is a straight line, then C is a hyperplane in
E"*1, ie., then the hypersurface is totally geodesic (u = 0). From the equation
of Gauss one may see that a hypersurface N in a Riemannian manifold M is
a hypercylinder if and only if the curvature tensors R’ and R are equal on TN,
that is, if R'(X, Y;Z, W)=R(X, Y; Z, W) for all vectors X, Y, Z, W tan-
gent for N (see [22]). From the contraction of the equation of Gauss (see,
e.g., [55]) one may see that, for n > 3, a hypersurface N of a Riemannian
manifold M is cylindrical if and only if III = II,, where III and II, are the
third fundamental form and the quadratic mean form of N in M, respectively
[22]. In particular, for n > 3, a hypersurface N of E"*! is cylindrical if and
only if N is Ricci flat [40]. A geometrical motivation for considering
quasiumbilicity as a generalization of both umbilicity and cylindricity is
given by the following result of Chen and Yano [23], [9], and Kulkarni
[43]: every quasiumbilical hypersurface of a real space form M admits a
codimension 1-foliation the leaves of which are totally umbilical submani-
folds of M. Well-known examples of quasiumbilical hypersurfaces of the
Euclidean space E"*! are the canal hypersurfaces [25), i.e., the envelopes of
1-parameter families of hyperspheres in E"*1. In this respect we also mention
that Blair [3] showed that the minimal quasiumbilical hypersurfaces of
Euclidean spaces are either totally geodesic or generalized catenoids (see also
[59]). Further examples of quasiumbilical hypersurfaces are given by all
geodesic hyperspheres in any complex space form [71]. A submanifold N of
a Riemannian manifold M with arbitrary codimension q is said to be
quasiumbilical with respect to a normal section &, and £ is called a quasiumbili-
cal normal section of N, if the principal curvatures of N with respect to £ are
given by p,, 4;, ..., 4;, where A; occurs n—1 times. In particular, ¢ is said to
be a cylindrical, umbilical or geodesic normal section if A, =0, u, = A, or p;
= A, = 0, respectively. N is said to be a totally quasiumbilical (cylindrical)
submanifold of M if there exist ¢ mutually orthogonal quasiumbilical (cylin-
drical) normal sections on N. A quasiumbilical normal section ¢ of N which is
not umbilical is said to be properly quasiumbilical. The principal direction’Z
of N with respect to a proper quasiumbilical normal section ¢ and corre-
sponding to the principal curvature p;, is called the distinguished direction of N
with respect to £, and in this situation N is said to be Z-quasiumbilical with
respect to &. As asserted in the following results, the extrinsic property of
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quasiumbilicity is closely related to the intrinsic property of conformal
flatness. When n > 3, every conformally flat hypersurface of a conformally
flat space is quasiumbilical ([6], [64]), and every totally quasiumbilical
submanifold of a conformally flat space is conformally flat [24]. In a 4-
dimensional Euclidean space, however, there do exist conformally Euclidean
hypersurfaces which are not quasiumbilical [44]. With respect to the equiv-
alence of conformal flatness and quasiumbilicity for submanifolds of dimen-
sion n > 3, one also has the following results. Every conformally flat sub-
manifold with codimension q < min {4, n—3} in a conformally flat space is
totally quasiumbilical [46], and every conformally flat submanifold with
codimension g < n—3 and with flat normal connection in a conformally flat
space is totally quasiumbilical [21]. We remark that the properties of
umbilicity, quasiumbilicity, flatness of normal connection and commutativity
of second fundamental tensors (in contrast with geodesicness, cylindricity
and, for example, also minimality) are all invariant under the conformal
changes of the metric on the ambient space [10]. Finally, we mention that, in
a Bochner—Kachler space, every totally quasiumbilical totally real submani-
fold of dimension > 3 is conformally flat [81].

5. Axioms of submanifolds in Riemannian geometry. According to E.
Cartan, a Riemannian manifold M satisfies the axiom of n-planes if for each
point p in M and for every n-dimensional linear subspace T of T, M there
exists an n-dimensional totally geodesic submanifold N of M passing through
p and such that T,N = T (where n is a fixed integer). Moreover, he proved
the following

THeOREM 5.1 (Cartan [7]). A Riemannian manifold of dimension m > 3
satisfies the axiom of n-planes for some n, 2 < n <m, if and only if it is a real
space form.

The axiom of planes was originally introduced by Riemann [61] in
postulating the existence of a surface S passing through three given points
with the property that every straight line having two points in S is complete-
ly contained in this surface. Beltrami [2] proved that a space of constant
curvature satisfies the axiom of 2-planes, and Schur [66] proved the con-
verse. Actually the latter result was also obtained by Schlaefli [63] in combina-
tion with work of Klein [39]. Hereby the role of straight lines is played by
geodesics. In this respect, see also [8].

As a generalization of the axiom of n-planes, D. S. Leung and K.
Nomizu in 1971 introduced the axiom of n-spheres: for each point p in M
and for every n-dimensional linear subspace T of T,M there exists an n-
dimensional totally umbilical submanifold N of M with parallel mean
curvature vector field such that pe N and T,N = T, and they proved the
following
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THEOREM 5.2 (Leung and Nomizu [45]). A Riemannian manifold of
dimension m > 3 satisfies the axiom of n-spheres, 2 < n <m, if and only if it is
a real space form.

Since the mean curvature vector field of a hypersurface is parallel if and
only if the mean curvature is constant, in case n = m—1 Theorem 5.2 was
originally due to Schouten [65]; we remark that this particular case was also
treated by Kowalski [42].

Further generalizations in this direction were given as follows by S. L
Goldberg and E. M. Moskal in 1976 and by W. Striibing in 1979.

THEOREM 5.3 (Goldberg and Moskal [31]). A Riemannian manifold M of
dimension m = 3 is a real space form if and only if for every point pe M and
for each n-dimensional linear subspace T of T,M, 2 < n < m, there exists an n-
dimensional submanifold N with parallel second fundamental form in M such
that peN and TN =T

THEOREM 5.4 (Strilbing [69]). A Riemannian manifold M of dimension m
= 3 is a real space form if and only if for every point pe M and for each n-
dimensional linear subspace T of T,M, 2 < n <m, there exists an n-dimension-
al submanifold N in M which satisfies the classical Codazzi equation and such
that peN and T,N=T.

Indeed, a totally umbilical submanifold has a parallel mean curvature
vector field if and only if the second fundamental form is parallel, and in this
case the classical Codazzi equation is trivially satisfied.

With respect to the axiom of spheres, the weaker axioms, obtained by
dropping the condition that the submanifolds N should have parallel mean
curvature vector field or by replacing this condition by the one according to
which for any vector V perpendicular to T at p there exists a totally
umbilical submanifold N with pe N and T,N = T such that V is the mean
curvature vector of N at p, give the following characterizations for the
conformally flat spaces established, respectively, by J. A. Schouten in 1924,
K. L. Stellmacher in 1951 and K. Yano and Y. Mutd in 1941.

THEOREM 5.5 (Schouten [64]). A Riemannian manifold of dimension m > 4
is conformally flat if and only if it satisfies the axiom of totally umbilical
submanifolds of dimension n, 3 <n <m.

THEOREM 5.6 (Stellmacher [67]). A 3-dimensional Riemannian manifold is
conformally flat if and only if it satisfies the axiom of totally umbilical surfaces.

THEOREM 5.7 (Yano and Muté [90]). A Riemannian manifold of dimension
= 4 is conformally flat if and only if it satisfies the axiom of totally umbilical
surfaces with prescribed mean curvature vector.

Based on the conformal invariance of the notion of quasiumbilicity, it
can be observed that for every point p in any conformally flat space M with
dimension > 3 and for every (m— 1)-dimensional linear subspace T of T, M
there exist quasiumbilical hypersurfaces N in M such that peN and T,N
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= T. Since every geodesic hypersphere in a complex space form is J¢-
quasiumbilical (where ¢ is the hypersurface normal), this property also holds
for the nonflat complex space forms. This implies that for n = m—1 Theorem
5.5 can only partially be generalized from umbilical hypersurfaces to
quasiumbilical ones, and that in order to obtain a property which is charac-
teristic of conformally flat spaces it is necessary to impose an additional
condition on the quasiumbilical hypersurfaces. We recall that a hypersurface
N of a conformally flat space M of dimension m > 4 is quasiumbilical if and
only if N is conformally flat, which suggests to use conformal flatness as this
additional condition. In doing so, in 1981 we proved the following resuit:

THeoREM 5.8 (Van Lindt and Verstraelen [77]). A Riemannian manifold
of dimension m > 4 is conformally flat if and only if it satisfies the axiom of
conformally flat totally quasiumbilical submanifolds of dimension n, 3 <n <m.

Hereby a Riemannian manifold M is said to satisfy the axiom of
conformally flat totally quasiumbilical submanifolds of dimension n > 3 if for
every point pe M and for every n-dimensional linear subspace T of T,M
there exists a conformally flat totally quasiumbilical submanifold N of
dimension n such that peN and T,N=T

By the intrinsic characterization in terms of R and R’ of the hypercylin-
ders of a Riemannian manifold it is clear that hypercylinders in conformally
flat spaces and real space forms are themselves conformally flat spaces and
real space forms, respectively. In some sense, conversely, this result also
shows that the conformally flat spaces and the real space forms can be
characterized by an axiom of conformally flat hypercylinders and an axiom
of hypercylinders with constant sectional curvature, respectively. Theorem 5.8
gives an improvement of the first of these statements, and our next result of
1981 does so for the second one. For its formulation we give the following
definition. A Riemannian manifold M satisfies the axiom of Einsteinian totally
cylindrical submanifolds of dimension n > 3 if for every point pe M and for
every n-dimensional linear subspace T of T, M there exists an Einsteinian
totally cylindrical submanifold N of dimension n such that pe N and T,N
=T

THeoreM 5.9 (Van Lindt and Verstraelen [77]). A Riemannian manifold
of dimension m > 3 is a real space form if and only if it satisfies the axiom of
Einsteinian totally cylindrical submanifolds of dimension n, 2 <n <m.

Finally, we state the following characterization for the conformally flat
spaces which was given in 1975 by B. Y. Chen and one of the authors.

THeOREM 5.10 (Chen and Verstraelen [19]). 4 Riemannian manifold M of
dimension m > 3 is conformally flat if and only if for every point pe M and
every n-dimensional linear subspace T of T,M there exists an n-dimensional
submanifold N of M, 2 < n <m, which passes through p and which at p is
tangent to T such that N has flat normal connection and commutative second
fundamental tensors.
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In relation with Theorems 5.5 and 5.7 we recall that every totally
umbilical submanifold of a conformally flat space has flat normal connection
and commutative second fundamental tensors.

6. Axioms of submanifolds in Kaehlerian geometry. Many authors in
various ways adapted the axioms of submanifolds in Riemannian geometry
to Kaehlerian geometry.

In 1955, K. Yano and I. Mogi defined a Kaehlerian manifold M to
satisfy the axiom of holomorphic 2n-planes if through each point pe M and a
tangent vector to any holomorphic linear subspace T of 7},1\71 with dimension
2n there passes a totally geodesic submanifold of M having T as a tangent
space, and they characterized the complex space forms as follows:

THEOREM 6.1 (Yano and Mogi [89]). A Kaehlerian manifold of real
dimension 2m > 4 satisfies the axiom of holomorphic 2n-planes for some n,
1<n<m, if and only if it is a complex space form.

Independently, K. Nomizu on the one hand and B. Y. Chen and K.
Ogiue on the other hand in 1973 introduced the axiom of antiholomorphic n-
planes by requiring that the linear subspaces T under consideration are
totally real

THEOREM 6.2 (Chen and Ogiue [17], Nomizu [50]). A Kaehlerian
manifold M of real dimension 2m > 4 is a complex space form if and only if for
every point pe M and for each n-dimensional antiholomorphic linear subspace
T of T;M, Z < n < m, there exists an n-dimensional totally geodesic submani-
fold N in M such that peN and TN =T

In 1973, respectively in 1976, S. 1. Goldberg, respectively S. I. Goldberg
and E. M. Moskal gave the following definition of the axiom of holomorphic
2n-spheres: for each point pe M and for every 2n-dimensional holomorphic
linear subspace T of ’I;]VI, there exists a 2n-dimensional totally umbilical
submanifold N of M with parallel’ mean curvature vector field such that
peN and T,N = T, and they proved the following

THEOREM 6.3 (Goldberg [30], Goldberg and Moskal [31]). A Kaehlerian
manifold of real dimension 2m > 4 satisfies the axiom of holomorphic 2n-
spheres, 1 < n <m, if and only if it is a complex space form.

For the antiholomorphic case, M. Harada in 1974, S. Yamaguchi and
M. Kon in 1978, and the authors in 1981 obtained the following results:

THeOREM 6.4 (Harada [33]). A Kaehlerian manifold M of real dimension
2m >4 is a complex space form if and only if for every point pec M and for
each n-dimensional antiholomorphic linear subspace T of '1;,1\2, 2<n<m
there exists a totally “umbilical submanifold N of M with parallel mean
curvature vector field such that pe N and TN = T.

THEOREM 6.5 (Yamaguchi and Kon [84]). A Kaehlerian manifold M of
real dimension 2m > 4 is a complex space form if and only if for every point
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peM and for each n-dimensional antiholomorphic linear subspace T of T, M,
2 < n < m, there exists a totally umbilical anti-invariant submanifold N of M
with peN and T,N=T

THEOREM 66 (Van Lindt and Verstraelen [78]). A Kaehlerian manifold
M of real dimension 2m > 4 is a complex space form if and only if for every
point peM and for each n-dimensional antiholomorphic linear subspace T of
T, M, 2<n<m, there exists a totally real submanifold N of M with
commutatwe second fundamental tensors and parallel f-structure in the normal
bundle such that pe N and TN =T

For dimensions m > 3 and 2 < n <m, in 1982, O. Kassabov obtained a
characterization for the complex space forms by dropping the condition of
the parallelism of the mean curvature vector field H in the axiom of
holomorphic 2n-spheres. We remark however that, on the remaining hypo-
thesis and for the given dimensions, automatically V'y H =0 for all Xe T, N,
and a similar observation can be made in the antiholomorphic case [79].

Tueorem 6.7 (Kassabov [38]). A Kaehlerian manifold M of real dimen-
sion 2m > 4 is a complex space form if and only if for every 2n-dimensional
holomorphlc (respectively, n-dimensional antiholomorphic) linear subspace T of
1, M at any point pe M, 2 < n < m, there exists a 2n-dimensional (respectively,
n-dxmens:onal) totally umbilical submanifold N such that pe N and T,N =T

Corresponding to Theorem 5.4, in 1983, P. Verheyen and one of the
authors proved the following

THeEOREM 6.8 (Verheyen and Verstraelen [79]). Let M be a Kaehlerian
manifold of dimension 2m > 4 and let n be a fixed integer such that 1 <n<m
(respectively, 2 < n <m). Then M is a complex space form if and only if for
every point pe M and for every holomorphic 2n-dimensional linear subspace T
of T, M (respectwely, for every antiholomorphic n-dimensional linear subspace
T of T, M) there exists a 2n-dimensional (respectively, n-dimensional) submani-
fold N of M which satisfies the classical Codazzi equation and such that pe N
and T,N=T

The following definition is essentially due to B. Y. Chen and K. Ogiue in
1974: a Kaehlerian manifold M satisfies the axiom of coholomorphic (2k + I)-
spheres if for each point pe M and for every (2k + I)-dimensional CR-section
T of T, M there exists a totally umbilical submanifold N of M such that
peN and »N = T; and they used it to characterize the locally flat spaces.

THEOREM 6.9 (Chen and Ogiue [18]). A Kaehlerian manifold of dimension
2m > 4 is locally flat if and only if it satisfies the axiom of coholomorphic
(2k + 1)-spheres for some integers k and | such that 1 <k<m, 1<l<m
(2k+1 < 2m).

In this respect we recall that there do not exist totally umbilical proper
CR-submanifolds in any positively or negatively curved Kaehler space.
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As stated above, S. Tachibana and-S. Kashiwada proved that every
geodesic hypersphere with normal section £ in a complex space form is J¢-
quasiumbilical. In 1980, B. Y. Chen and one of the authors studied the
following corresponding axiom: a Kaehlerian manifold M satisfies the axiom
of J&-quasiumbilical hypersurfaces if and only if for each point p of M and for
every hyperplane T in 7},1\7! with hyperplane normal ¢ there exists a J¢-
quasiumbilical hypersurface through p with T as a tangent space at p, and
together with the result of S. Tachibana and S. Kashiwada obtained the
following

THEOREM 6.10 (Chen and Verstraelen [22]). A Kaehlerian manifold of real
dimension > 4 satisfies the axiom of J&-quasiumbilical hypersurfaces if and
only if it is a complex space form.

We mention that this theorem genegalizes earlier results in this direction
from Tashiro and Tachibana [73] and Vanhecke and Willmore [74]. In 1981
we obtained the following particular case of the previous theorem:

THEOREM 6.11 (Van Lindt and Verstraelen [77]). A Kaehlerian manifold
M of real dimension > 4 is locally flat if and only if for any point p of M and
for any hyperplane T of ’1},1\7 with hyperplane normal ¢ there exists a J¢-
hypercylinder N in M such that pe N and I,N=T

A similar result also holds for these hypercylinders for which the
distinguished tangent section together with £ spans a totally real plane [75].

Finally, we refer to [75] for two partial complex analogues of the
characterizations of conformally flat spaces given in Theorems 5.8 and 5.10.
In fact, using totally real subspace T in the axioms being considered there,
one may conclude that the Kaehlerian manifolds which satisfy these axioms
must be Bochner flat.
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