COLLOQUIUM MATHEMATICUM

VOL. XXXVIII 1978 FASC. 2

SERIES OF ITERATES

BY

MIECZYSLAW ALTMAN (BATON ROUGE, LOUISIANA)

0. Introduction. The subject-matter of this paper pertains to the
classical theory of infinite series established by A. L. Cauchy in the 19-th
century and further developed by other mathematicians. Also, the tech-
nique which is used here is not a product of the modern mathematics
and, as a matter of fact, was available even before the principles of the
theory of infinite series were established. If some ideas here appear to
be new, it can only be surprising.

_In the first two sections, series of iterates of a positive function are
discussed. Series of iterates constitute a very comprehensive class which
contains: geometric series, Dirichlet series, Bertrand series and more
general series which appear in the Cauchy integral test. An Ermakoff
type test is also proposed for series of iterates.

An equivalent of Cauchy’s integral test is discussed in Sections 3
and 4. An application to power series is given there. Also a remark on
the well-known Cauchy-Hadamard theorem is made which includes some
new cases of convergent as well as divergent series. For these cases the
classical test is inconclusive. A fixed point theorem which generalizes
‘the contraction principle for complete metric spaces is presented in
Section 5. It is based upon the equivalent of Cauchy’s integral test.

1. Series of iterates of a positive function.

1.1. Let be given a real-valued function @ with the property
(a) 0< Q(8)< s for 0 < 8K s,.
Then the series

o0
8= Dlsny Where s, = Q(sy),
n=1

is called a series of iterates (generated by Q).
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A class of convergent series of iterates is defined in [1] (see also [2])
and it is shown there that the series S is convergent and

Dsi< [ g

if @ also satisfies in addition to (a), the following cond.ltlons
(b) The function g(s) = s/(s—@(s)) is non- increasing.
(0) The inequality .

B3

[ g(8)ds< oo

0

holds true.
If conditions (a) and (b) are satisfied, then condition (¢) is also nec
essary for the convergence of the series § provided that the following
condition is satisfied:
(d) There exist positive numbers ¢ and d such that

[@(%)—@Q(v)]/(u—v) > for all 0<v<u<a.

In this case the existence of the integrals f g(8)ds is obviously required
for 0< a< s,.

Condition (d) can be replaced by the following one:

(d’) The function Q(s) is differentiable in an open interval (0, a)
and the derivative @’(s) has a limit as s — 0+.

In fact, since the function @ (s)/s is non-decreasing, by (b) and, con-
sequently, by (a), it has a positive limit not greater than 1. Hence, by
de L’Hospital’s rule, the derivative @’(s) has a positive limit as 8 — 0+.
This implies that condition (d) is satisfied.

1.2. Let y = f(8) be a non-decreasing function satisfying the condition
0<f(8)<1 for 0<s8<8. Put Q(s) =s(L—f(s)) for 0<s<s and
81 =Q(8,), n =1,2,... If

&
[ fe)]"ds < oo,
then

Do, < o and Zsf f[f(s)]“ds

n=1 i=n

In fact, it is easily seen that conditions (a), (b), and (¢) are satisfied
with g(s) = [f(s)]™.
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As a particular case, we obtain the following convergent series of
iterates by putting f(s) = 8*/(1+a) for 0<s<g; <l and 0<a<1l:
Sn+1 = Q(8n), where @ (s) = 8(1—8“/(1 'l'a))
(see [2]).
1.3. Let y = f(s) be a non-decreasing function satisfying the condition
0<f(s)<1 for 0 < 8 < 8,. Assume that the derivative f'(s) exists in some
open interval (0, a) and it has a limit as 8 - 0+4. Then the semes of iterates

841 = Q(8,), where @ (s) = s(1 --f(s)), is oonvergent if and only if f [f(8)1'ds
< oo provided that the integrals f [f(s)] 'ds ewist for 0 < B < 8,.
B

In faect, it is easily seen that conditions (a), (b) and (d’) are satisfied
and, therefore, the assertion follows.

1.4. Suppose that Q is a function satisfying condition (a). Suppose,
in addition, that @ s differentiable and the derivative Q'(8) has a limit as
8 — 0+ and satisfies the condition

(e) @' ()< Q(8)/s for 0<s< s,

Then the series of iterates s,., = Q(s,), » =1,2,..., 18 convergent if
and only if

8]

[ 9()ds < oo

81
provided that the integrals [ g(s)ds exist for 0 < f < 8,.
B

In fact, condition (d’) is satisfied, and so is condition (b), since the
derivative of g(s) = s /(s—Q(s)) exists and is negative, by virtue of (e).
It is easy to see that the funection

Q) =s[1—s*/(14+a)] for 0<s<s;<1
satisfies the above-mentioned hypotheses.

1.5. The Dirichlet series

8= D1m, 1<a,
n=1

\
is a series of iterates generated by Q(s) = (s~ +1)"*< s (see [2]). The

function
g(s) = [1—Q(s)/s]' = [1—1/1+8")]"
is decreasing. The integral in (¢) is

8] 8]

f g(s)ds = f [1-1/(1+8")]'ds = a f{w‘“[l (/= +1)f]} " da.
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A general class of series of iterates can be defined by
8 = D f(n),
n=1

where f is a positive decreasing continuous function such that f(x) — 0
a8 ¢ - oo. In this case we have (see [2])

Q(8) =f(f18)+1), s=f(), 8 =Ff(n),
g(s) = s[s—f(f () +1)] .
If the function with values f(z) [f(x) —f(z+1)]"" is not decreasing,

then g is not increasing and condition (b) holds true. If, in addition, f is
differentiable, then condition (¢) can be written in the form

[ g(s)ds = [ [s—f(f(8)+1)]"as

= [ f@) If" @) [f(@) —fl@+1)] do < .

Condition (d) for @ can be written in the form

[flz+1)—fly+)]/[f(@)—f(y)]1=>d>0
for sufficiently large y > . This condition can be replaced by the follow-
ing one:
f'(®+1)/f'(x) has a limit as & — oo, provided that the function f
is differentiable and f'(x) # 0.
The Bertrand series (see [4])
D lynlyn .. 1y (Lm)PT,

where
lox =2, Lo =loge, ..., L.z =logl,_,x,

provide an important class of convergent series of iterates if p > 1. This
is a subclass of the series of the form > f(n) mentioned above.
n

f 1.6. Let Q be a function which satisfies condition (a) and put

@.(z) =Q(x), @Q.(x) = Q(Q(w))’ seey
Qr® =Q(Qk(w)) for k=1,2,...,

and let {b,} be an increasing sequence of positive integers such that
bpi1—br < M(b,—Db,_,). Then the series

Zsm where 8,., = Q(s,),

n=1]1
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and the series

o]

D (brys — bi)Qo, (81)

k=1
are either both convergent or both divergent.

This fact results immediately from Cauchy’s condensation test (see [3]),
since, by definition, s, = @, (s,).

2. An Ermakoff type test for series of iterates.

2.1. The argument used by Ermakoff (see [3], p. 296) can be applied
to series of iterates in order to obtain a similar test. For this purpose
we investigate the convergence of the improper (in general) integral in (c).
Let @ be continuous and let (a) be satisfied. Then we obtain

[g(s)as = [ e=g(e™™)ds = [ f(a)dw =1,

where f(x) = e *g(e™"), 8 =€~

Put E(x) = e*f(e")[f(x). It follows from the argument of Ermakoff
(see [3], p. 297) that the integral I is convergent if there exists a positive
number 0 << 1 such that E(x) < 0 for all sufficiently large x, and I is
divergent if ¥ (x) > 1 for all sufficiently large x. In terms of g and 8 = ¢™*
we obtain

B(z) = e g(e1)/s’g(s) = &(s)
or

&(8) = e (s —Q(s)) /8 (e="—Q (7).

Thus, the integral I in (¢) is convergent if £(s) < 6 <1 for all suf-
ficiently small positive s, and I is divergent if &(s) > 1 for all sufficiently
small positive s.

Let us observe that if

gle™)/g(s) or (s—Q(s))/le =@ (e ™))

is bounded, then &(s) < 6 < 1 for all sufficiently small positive s, since

e >0 and e >0 ass—>0+.
2.2. The following Ermakoff type test for series of iterates can now
be easily obtained:

Let Q be a continuous function satisfying conditions (a), (b), and (d)
or (d'). Then the series of iterates generated by @ is convergent if there exists
a positive number 6 << 1 such that & (s) < 0 for all sufficiently small positive s,
and this series is divergent if &(s) > 1 for all sufficiently small positive s.

The proof follows immediately from the argument of 1.1. This test
can also be applied to some special cases considered above.



310 M. ALTMAN

Remark. The function ¢° in Ermakoff’s test can of course be re-
placed by other functions (see [3], p. 298). If ¢(7) is any monotone in-
creasing positive function, everywhere differentiable, for which ¢(z) > x
always, then we can replace

E(x) = ¢°f(e") [f(2)

B(2) = ¢'(@)f (p(@))/f(2).
Let ¢(2,) = 1 and put s = 1/p(x). Then we obtain

by

[g(s)ds = [ ¢'(2) [p(@)]*9(1/p(2))da.

iE[ence, E(x) for the integrand function is
¢ (¢@) [ (p@)] 9(Lip(¢(@)

F —
=) o (@) T'9 (Lo (@)
In terms of s we obtain
_ @' (1/s)g(1/p(1/s))
76 = o) g (s)

Applications of series of iterates are given in [1] and [2].
2.3. Consider the power series

anw‘", where s, ., =@Q(s,) for n =0,1, ...

Suppose that the function Q satisfies conditions (a) and (b) of Section 1.1.

Then the radius of convergence of the power series is 1 or the series )'s,
can be majorized by a geometric series. =0

Proof. It follows from (a) and (b) that the sequence of s,,,/s,
=@ (s,;)/s, <1 is non-decreasing and, therefore, it has a limit ux < 1.
If <1, then 8, < sou” for all n. If 4 = 1, then, by virtue of a theorem
of Cauchy, s/ -y =1 a8 n — oo. Hence, the radius of convergence
equals 1/u = 1.

2.4. Abel’s limit theorem (see [3]) can be applied in the follow-
ing way.

Consider the power series

f(w) = anm"7
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where 8,,, = Q(s,) with Q satisfying conditions (a) and (b). Suppose that

(1) hﬂ Q'(s) =1
8—>
Then lim f(z) exists and is equal to 2 8, < oo if and only if
z—>1-0 n=0
S0
I =fg(8)d8< 00}
0
and
lim f(2) =
z—>1—-0

if and only if I = oo, where g(8) = 8/(s —@Q(8)). Condition (i) can be replaced
by condition (d) and sup[@Q(s)/s] = 1.

Proof. Since 1 is the radius of convergence for the power series f(x),
the proof follows from Abel’s limit theorem and from the fact that, in
this case, condition (c) is necessary and sufficient for the convergence of I.

Example. @(s) = s(1—s*/(14a)) for 0<a<1 and 0<s8<s8,<1
satisfies all the hypotheses.

3. Cauchy’s integral test.

3.1. Let f be a continuous mon-increasing funation which is positive
for © > 0. Then, by Cauchy’s integral test, the series 2 f(n) is convergent
if and only if n=

-

ff(w)da:< oo.

Now, let B(s) be a non-decreasing continuous positive function defined
on the interval (0, 1] and let g <1 be an arbitrary fized positive number.
Then the series 2 B(q") 18 convergent if and only if

n=1

(3.1) fs“B(s)ds< oo.

This fact follows immediately from Cauchy’s integral test by putting
f(x) = B(¢®). Thus, putting 8 = ¢ we obtain

00 1
[ f@)da = |logg|™" [ s B(s)ds.
0 0

For any function f(r) which satisfies the assumptions made above
for Cauchy’s integral test we can always define a function B(s) by the
formula f(z) = B(¢") for 8 = ¢%, where ¢ is arbitrary with 0 < g¢< 1.
The function B has, of course, all the properties required above. In this
simple way we obtain an equivalent form of Cauchy’s integral test.
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3.2. Consider the power series ) a,z". Let B(8) be a positive non-
n=0

-decreasing continuous function defined on [0,1] and such that
1
fs“B(s)ds< 0.
0

Suppose that o and g << 1 are positive numbers such that

la,] < B(q")/e"
Jor almost all positive integers m.

(o]
Then the power series D a,x™ is uniformly convergent for |x| < o
n=0

This fact follows immediately from the equivalent Cauchy integ-
ral test.

It turns out that, by using the well-known Cauchy-Hadamard theorem
in order to find the radius of convergence for the power series considered
in this case, one can only prove the uniform convergence for |z| < o,
where 0 < g < p.

3.3. An Ermakoff type test in terms of the function B(s) can easily
be established. In other words, we have to find a convergence test for
the integral

I =fs“B(s)ds.

Replacing ¢(s) in 2.1 by the function s~ B(s) we obtain the required
expression for &£(s):

&E(8) = e *B(e”'*)/sB(s), 0<s<1.

Hence, the integral I is convergent if there exists a positive number
0 < 1 such that
(3.2) ()<<l

for all sufficiently small positive s, and the integral I is divergent if
(3.3) &(8) =1

for all sufficiently small s > 0.

Notice that if B(¢~"*)/B(s) is bounded for 0 < s < 1,then €(s) < < 1
for sufficiently small s > 0, since ¢~ /s — 0 as s — 0+

There is a more direct approach by investigating the convergence
of the integral

= [ B(¢")da,
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where ¢ < 1 is positive. Then, by Erma.koﬁ’s test, we infer that if there
exists a positive 6 < 1 such that

(3.4) E,(») = ¢B(¢")/B() < <1
for all sufficiently large x, then the integral I, is convergent, and if
(3.5) \ By(r)>1

for all sufficiently large x, then the integral I, is divergent.

Since the convergence of the integral I, for a particular positive
q < 1 implies the convergence of the integral I, and the convergence of I
yields the convergence of I, for arbitrary positive ¢ < 1, it follows that
the convergence (divergence) of I, for a particular positive ¢ << 1 implies
the convergence (divergence) of I, for arbitrary positive ¢ < 1.

Suppose now that there exist positive numbers ¢ < 1 and 6 < 1 such
that one of the conditions (3.1), (3.2), and (3.4) is satisfied, and assume
that |a,| < B(q")/o" for almost all positive integers n. Then the power

o o]
series ) a,2" is absolutely convergent for |r| < o. On the other hand,

n=0

if there exist positive numbers ¢ and ¢ < 1 such that one of the conditions
(3.3), (3.8), and I = oo is satisfied, and |a,| > B(q")/o" for almost all

positive integers n, then the power series > a,2" is absolutely divergent
for |z| > o. =0
Notice that the latter case does not provide information needed to

compute the radius of convergence on the basis of the Cauchy-Hadamard
theorem.

3.4. Consider now the Taylor series

N @ (@)w—a”

n=0

for the function f. Let B(8) be a continuous non-decreasing function which
i8 positive for 0 < 8 <1 and satisfies condition (3.1). Suppose that there
exist positive numbers o and q < 1 such that

(1/n!) |f™(a)] < B(q")/o"

for almost all positive integers m. Then the Taylor series for f is absolutely
uniformly convergent if |x—a| < o.
Of course, condition (3.1) can be replaced by condition (3.2) or (3.4).
Suppose now that the integral

1
I=[s"B(s)ds = oo
0
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and 0> 0, 0< ¢g< 1 are such that

(1/n1) 1™ (a)] = B(g") /"
for almost all positive integers n. Then the Taylor series for f 18 absoluiely
divergent if |x—a| > o.
Of course, the assumption I = oo can be replaced by condition (3.3)
or (3.5).
4. A generalization of the Cauchy-Hadamard theorem.

4.1. It is shown in Section 3.3 that in some cases of convergent as
well 98 of divergent power series the test based on the Cauchy-Hadamard
theorem is inconclusive. By using the result of Section 3.3, the Cauchy-
-Hadamard theorem can be generalized so as to include the cases just
mentioned.

Let D a,2" be a given power series. Denote by B, the class of all
n=0

continuous non-decreasing functions which are positive for 0 < s <1 and
such that

1
[ B(s)ds < oo.
0
Let us denote by B; the same class of functions for which
1
[s7'B(s) =
(1}

Thus, if B € B,, then the series ) B(q") is convergent for arbitrary

n=0

positive ¢ < 1, and if B € B, then the series 2 B(q") is divergent for
arbitrary positive ¢ < 1. Put n=0

u = limsup |a,|"™.
- n

It is easy to see that if B € B,uB,4, then
(4.1) liminf {{B(¢") " /la,""} < 1/u. [
n

In fact, the sequence {B(g")} is non-increasing and positive. Hence,
it has a limit €.
If € > 0, then, by a theorem of Cauchy (see [3]),

[B(@)T'" -1 a8 n — oo.

In this case, inequality (4.1) becomes an equality.
If # =0, then for almost all positive integers n we have

[B(g"I" <1
and, therefore, inequality (4.1) holds true.
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4.2. (i) If there exist a fumction B € B, and positive numbers o and
g <1 such that

(4.2) la,| < B(¢")/e"
or almost all po!riti've integers n, then the power series

fla) = D ana"

n=0
18 absolutely convergent if |x| < o
(ii) If o > 1/u or if there exist a function B € By and positive numbers o
and ¢ <1 such that

(4.3) la,| = B(q")/e" ‘
for almost all positive integers n, then the power series f(x) is absoluiely
divergent if |x| > o.
(iii) The following equalities hold:
a = sup sup Uminf{[B(¢")]""/la,|'"} = 1/u,

BeBg 0<g<l n
B = sup sup liminf{[B(g")]'"/|a,[""} = 1/u.
BeBg 0<g<l n

Proof. Statements (i) and (ii) are discussed in Section 3.3. In orde r
to prove (iii) let us observe that the function B(s) = s belongs to B,
and we have

B(¢") =¢" and ap = supliminf{g/|a,"*} = 1/u.
0<g<1 n

But it follows from (4.1) that o« <1/u.

Since B < 1/u, by virtue of (4.1), the second equality follows ﬁ'om
the fact that the function B(s) = 1 for 0 < s < 1 belongs to Bj,. Therefore,
we have B(¢") =1 for all n and g = 1/u.

Notice that if ¢ < 1/u, then there exist a function B € B, and a pos-
itive number ¢ < 1 which satisfy (4.2). In fact, we can ehoose a positive ¢
such that up << g¢<1 or u < gq/o. Then, by the definition of the upper
limit, we have

|

-

6,/ < gle  or e, < g"e"
for almost all positive integers n. Thus, condition (4.2) is satisfied for
the function B(s) = 8, 0 < 8 < 1, which, of course, belongs to B,.

Example. The Dirichlet series provides a classical example of a
power series for which the Cauchy-Hadamard theorem is inconclusive.
For consider the power series

S = 2w"/(n+1)", where a > 1.

n=0
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Since the sequence {n'/"} has 1 as its limit, the radius of convergence
for §is 1/u = 1. Thus, if |#| < 1, then the series 8 is absolutely convergent,
and the Cauchy-Hadamard theorem is inconclusive if |z| = 1. But if
|z| = 1, then the convergence of S follows from the Cauchy integral test.

Using this example it is possible to show that there exists a power
series which satisfies the hypotheses of the generalized theorem while
the classical Cauchy-Hadamard theorem is inconclusive. In other words,
Tor each positive ¢ <1 there exists a function B € B, which satisfies
condition (4.2).

Let

S = Za,,,a:”, where a, = 1/(n+1)® with a > 1.
n=0
We define the function B by the formula B(s) = f(x), where s = ¢*
and f(z) = 1/(z+1)* for 0 < x. The function B is obviously increasing,
continuous, and it is easily seen that

1 oo
N fs“B(s)ds = |logqlff(m)dw< 0o.
0 / 0

Thus, B € B, and also condition, (4.2) is satisfied with o = 1, since
a, =1/(n+1)* = f(n) = B(¢") = B(¢")/1* forn =0,1, ...

Hence, the power series S is absolutely convergent if |z| < 1. As we
mentioned above, the classical Cauchy-Hadamard theorem is inconclusive
if |#| =1 which is precisely the radius of convergence for the power
series S. '

Finally, let us observe that by introducing an equivalent of the
Cauchy integral test we have established an important link between the
Cauchy integral test and the radius of convergence for power series which
is defined by the Cauchy-Hadamard theorem. Moreover, in some in-
conclusive cases the Cauchy equivalent test may be applicable. However,
if instead of B a function f is given for which Cauchy’s integral test is
applicable, then B(q") in (4.2) and (4.3) can be replaced by f(n),n» =1, 2, ...

5. A fixed point theorem.

5.1. As an application of the equivalent of Cauchy’s integral test
we obtain the following fixed point theorem:
Let F: X — X be a continuous mapping of the complete metric space X

into itself. Let B(s8) > 0 for 0 < s < a be a continuous non-decreasing function
such that

a
[s7'B(s)ds < oo.
0
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Suppose that there exist an element x € X and @ positive number q < 1
such that d(Fz, r) < a and

(5.1) d(F"*'z, F*z) < B(¢"d(Fz,®)) forn =1,2,...,

~

where d(-, -) is the distance in X. Pul x,,, = Fz, for n =1,2,...
Then the sequence {x,} converges to a fixed point x* = Fx*.

Proof. We have, for m > n,

m—1

m-—-1
A(@y1y Toa) = A(F™a, F*0) < ) d(F*'2, F'a)< Y Bl¢'d(Fz, v)).

i=n

Since the series ) B(g"d(Fw, w)) i8 convergent (see Section 3.1), the
i=1

sequence of elements =»,,, = Fr, is a Cauchy sequence and, therefore,
it has a limit 2*. The continuity of F implies that z* = Fx*.

Remark. Suppose that F is a contraction mapping, that is, there
exists a positive constant ¢ < 1 such that

d(Fx,Fy)<qd(x,y) for all z,yeX.

Then, of course, I satisfies condition (5.1) if we put B(s) = s and x
is an arbitrary element of X.

Notice that this theorem actually yields an application of the Cauchy
integral to the general theory of fixed points. The Cauchy integral test
appears in its equivalent form discussed in Section 3.1.

As to the rate of convergence of the sequence of the successive approx-
imations z,,, = Fz,, the following observation is immediate. If F is
a contraction mapping, then the convergence is linear, that is, the rate
of convergence is the same as that for some geometric seTies. However,
in general, the rate depends essentially on the function B.
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