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A NOTE ON VARIETIES OF UNARY ALGEBRAS

BY

STANLEY BURRIS (WATERLOO, CANADA)

If G and G* are two non-isomorphic (congruence) simple finite groups,
then they generate distinct varieties (see [6], p. 166).

B. Joénsson has proved in [5] that the same result is valid for lattices.
The following construction will show that this property fails to hold for
unary algebras (for terminology see [3]).

Let (G, -> be a multiplicative group and consider the left translation
algebra A(G) = <G, F), where § = {f,: a<G, f,(x) = ax}.

LEMMA 1. A basis for the identities of W(Q) is given by {fofy = fun: @, beG}.

Proof. An immediate consequence of the observation that f, ... f,
=Jfo, o+ Jo,, L @y ... @y, =0y ... 0y

An equivalence relation 6 on G is left compatible if {x,y)>c0 =
(zz,2yd B for all z in @ (see [1]). It is easy to see that 0 is left compatible

iff 6 [1] is a subgroup of G and the equivalence classes are precisely the
left cosets of 6 [1].

LeEMMA 2. 0 is a congruence for W(@) iff 0 is left compatible with G.
Proof. Straightforward. |

For convenience of notation, if H is a subgroup of G, let A(G)/H
denote the algebra with the carrier G/H and with f,(bH) = abH (be@)
as fundamental operations (G/H denotes the set of left cosets). Also, define
N(G,H) = N {AHA ': 2¢G}.

THEOREM. A basis for the laws of W(G)/H (where H # Q) is given by
{fafo = fur: @, <@} U {f, = f1: aeN (G, H)}.

Proof. In view of Lemma 1 we only need to determine the a, b in
G such that f, = f, in A(Q)/H; but this is equivalent to f,—1, = f,. If
fo =f1 in A(G)/H, then f,(AH) = AH for all AeG,i.e. ac () {AHA ': AeG}
= N(G, H), and conversely.

EXAMPLE. Let G be the alternating group on 5 elements, and let
H and K be two maximal subgroups of different orders. Then UA(G)/H
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and A(@)/K are simple and non-isomorphic, and since N (G, H) = N (G, K)

= {1}, it follows from the Theorem that they generate the same variety.
ProBLEM 1. Does there exist a variety of semi-groups generated

by each of two non-isomorphic simple finite semi-groups? (P 704).

Following a suggestion of Djokovic the author was able to conclude
the existence of any given finite number of non-isomorphic simple finite
unary algebras which generate the same variety (!) by examining the
maximal subgroups of PSL(2, 2') for suitable f (cf. [4], p. 213). However,
it is easy to show that we cannot increase this to an infinite number for
the following reasons. Let ¥~ be a variety of unary algebras generated
by a finite algebra. Since congruence simple (and cardinality greater
than two) implies at most one subalgebra, it follows that every congruence
gimple algebra in ¥~ would be a homomorphic image of the free algebra
on one generator, or a two element algebra, and thus there could only
be a finite number of congruence simple algebras in ¥ .

On the other hand, Comer has exhibited in [2] a variety of semi-
groups which can be generated by any one of an infinite number of
non-isomorphic subdirectly irreducible finite semi-groups.

PROBLEM 2. Does there exist an infinite number of non-isomorphic
simple finite algebras which generate the same variety? (P 705).

The author would like to thank H. Crapo and D. Higgs for valuable
comments on the topic of this paper.

Added in proof. T. Karnofsky (Berkeley) has announced positive result
for the two problems; see Notices of the American Mathematical Society 17 (1970),

p. 939.

(1) This generalizes Wille [7].
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REMARKS ON ALGEBRAS HAVING TWO BASES
OF DIFFERENT CARDINALITIES

BY

J. DUDEK (WROCLAW)

Let A = (X; F) be an abstract algebra and let S(A) denote the
set of all » such that in U there exists an essemtially n-ary algebraic
operation, i.e, an operation depending on all its variables.

E. Marczewski has raised the following conjecture (see [1]): if U
contains two bases of different cardinalities, then S(2) contains all po-
sitive » (for the definition of bases see [1]). Observe that because of the
existence of the trivial unary operation ej(x) = & there is 1¢8() for
arbitrary .

Narkiewicz [2] obtained some partial results connected with the
conjecture. In particular, he proved that

(i) if A contains two bases of different cardinalities, then 2 eS ().

In this paper we prove some further results (Theorems 1, 2 and 3).

If A = (X; F) is an abstract algebra, then by I(A) we denote an
algebra (X; I(F)), where I(F) is the set of all idempotent algebraic
operations f(zy,...,,), i.e.,, of all operations satisfying equality f(z,
Z,...,x) = x. The algebra I(¥) is called the maximal idempotent reduct
of A.

Let A = {a,, @,,...,4a,} and B = {b, b,, ..., b,,} be two bases of A
such that m < n <N,. It is easy to check that

fi(g1 92y -, In) (B1y Zoy .oy @) =2, (1 =1,2,...,m),
9i(f1y fay vy Jm) W1y Yay ooy Yu) = Y; G=1,2,...,n),
where f; and g; are some algebraic operations in .
THEOREM 1. If U contains two bases of different cardinalities, then
the set 8(I(N)) is infinite.
Proof. Consider the operations

(if)

.= F. (., ! 1 2 n ,.n n
F’L F@(ml,xz, ooo’wm’wi, 602, ...’wfn’ ...’$1, $2,...,wm)

=filo:(®@, @, ..., @), go(ad, a2, ..y 2R, o Gl O oy A)),
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where f; and g; satisfy (ii). Obviously, all F; are idempotent. Observe
that for every ¥ =1,2,...,n there exists an operation F; depending
on some variable m{-‘o, where 1 < %, < m, for otherwise there would exist

k, such that no operation F; would depend on a%, z%, ..., z¥, and hence
-the operation

G, (@0, 5o, ..., @)
= gko(Fana '--7Fm)(wi’ ceey w}mwiy ---’mfny --~’w’1c°’ Ceny TR

c*)mo
N n
cery Ty oy Tpp)

would be an algebraic constant, a contradiction with (ii).

Now we shall prove that among operations F; there exists one de-
pending on p variables, where p > n/m. In fact, if each F; depends on
less than n/m variables, then the set of variables on which the operations
F, depend will be of the cardinality less than m(n/m) = n which gives
a contradiction with the first part of the proof. Without loss of generality
we may assume that m is the minimal cardinality of bases in U and = is
the next one. By a theorem of Marczewski (see [1]) numbers of elements
of bases in A form arithmetical progress I, = m - sr, where s =0,1,...,
r = n—m. Let g bera natural number. Then there exists a base B, such
that |B,] =1, and I,/m > ¢q, and among the operations F; defined for
the bases 4 and B, there exists an operation depending on at least ¢’
variables, where I,-m > ¢’ >l,/m. Because ¢ was arbitrary, we get the
thesis of Theorem 1.

From Theorem 1 and results of K. Urbanik (see [3]) we get

. COROLLARY. If U is an algebra with two bases of different cardinalities,
then S(I(A)) is of one of the following forms: {1,3,5,...}, {m, m+1,...},
{1,2,3,...,n} U {m,m+1,...},{1,3,5,...} u{m,m+1,...}

THEOREM 2. If U contains two bases of different cardinalities, then
there exists n, such that 2¢S(A) and ne S(W) for all n = n,.

Proof. 2¢8(A) by (i). Consider S(I(A)). In view of the Corollary
it remains to check the case S(I(¥)) ={1,3,5,...}. But from [3]
(Theorem 2, part 3, p. 139) it follows that I(A) is then a maximal
idempotent reduct of a Boolean group, i.e., of a group satisfying 2z = 0.
This reduct can be considered as the algebra (X; x,+ #,+ %;), where -} i8
the group operation. Let #-y be an essentially binary operation which
exists by (i). Then the operation (@,+ &, ...+ @y, 1)" Tz, is essentially
2n-ary. In fact, because 4 is commutative, it depends on all variables
@y, T3y ..., &y, ; OF oD none of them. If it does not depend on a,, or if it
depends on none of the remaining variables, then the identification
Ty =By = ... = X, , = x gives a contradiction with the assumption that
the operation z-a,, is essentially binary. Hence S(%) = {1,2,3, ...}
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THEOREM 3. If U contains two bases of different cardinalities and
does mot contain any algebraic constant, then

S(I(?I))‘ =2{1,2,..., kb u{l,l1+1,...}
for some k,1 (2 <Ek<]I).
Proof. Consider the operations

H; = H;(2, ®ay ...y Tp) =fi(.‘71(w1)7 G2(22)y -« -y gn(wn))7

where §(z) = g(x, %, ..., ).
Take the substitution

12...n . ‘
o=\ )y 1<y <2, k=1,2,...,,n,
Uylgee. ty
and put
H(o)(wy, ®2) = H;(®; %3 ...y ®;)), Where ¢ =1,2,...,m.

We shall prove that among operations H;(s) there exists an essen-
tially binary one. The operations H, are idempotent by (ii).

Suppose to the contrary that all H,(c) are trivial. This means that
H;(0) = H;(0)(®1, ®2) = Xo5,4), Where (o, 9)e{l, 2}. Define the mapping

p(0) = (E(O'y 1), &(0, 2), ..., &(0, m))
Let ¢(0,) = ¢(0,). Then (o, k) = (05, k) for k =1,2,...,m.

Putting
(1 2...n" 12...n
oy =1. . ) and o, =|{ A )
by g oee Uy M)z dn
we have
H,.(0,) (21, ;) = Hy(0,) (2, @)
and

gAk(mik) = gk(Hl(O'l)(-’”u Bo)y oovy Hp(a9) (@4, mz))
= gk(H1(0'2)(5”17 Xg)y eeny Hp(0g) (@ wa)) = gk(mjk)'

Hence 4, = j, for k = 1,2, ..., 7n, because A does not contain any
algebraic constant. Thus we see that ¢ is one-to-one but it is impossible,
because there does not exist a one-to-one mapping of the 2"-element
set into 2™-element set. Thus we infer that in I(%) there exists an essen-
tially binary operation and our theorem easily follows from the corollary.

Remark. The idea of the proof of Theorem 3 is similar to that of
the proof of Theorem 1 in [2].
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