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I. A subset L of a metric space (X, o) is called linear if every subset
consisting of three points of L is linear. Linearity is defined by the metric
betweenness: a triple {p, ¢, r} is linear if one of the points p, q, r lies
between the two others, and we say that q lies between p and r (writing pqr)
provided that

e(p,r) = o(py, @) +elg, 7).

The metric betweenness in the Euclidean =n-space E" (with the
ordinary metric) will be denoted by E(pqr) and in the Minkowski
n-space M" (with the metric defined below) by M (pgr).

"The aim of the present paper is to give necessary and sufficient
conditions for M (pqr).

II. The metric betweenness has the following properties ('):

1. symmetry of the outer points (pgr implies r¢p);

2. special inner point (if pgr and p # ¢ + r, then neither,prq nor ¢rp);

3. transitivity (pgr and prs are equivalent to pgs and ¢rs).

Following Blumenthal (op. cit., p. 21) we shall define the n-dimen-
sional Minkowski space M" by introducing a new metric m into the
n-dimensional Euclidean space. The procedure is as follows:

Let X be a convex surface of E* and 0 be a point of E"\X such
that every ray with initial point, 0 intersects X in exactly one point and
that 2 is symmetric with respect to 0. If x and y are two points of E",
put m(z,y) =0 if x =y, and m(r,y) = vy/0Pxy, if x #*y, where
Pry is the point at which the ray with initial point 0 and parallel to the

—

vector xy meets 2, and zy and 0Pzy are the Euclidean distances of the
corresponding points.

(!) L. M. Blumenthal, Theory and applications of distance geometry, Oxford
1953, p. 33.
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Examining the proof of the triangle inequality for m, given by
Blumenthal, one can deduce from it that

a. M(xyz) if and only if E(PxyPxzPyz).

b. Either Pry = Pxz = Pyz or Pxy # Pxz # Pyz # Puxy.

c. If E(xyz), then Pry = Pxz = Pyz.

d. E(xyz) implies M (zyz).

If the surface X is strictly convex, i.e., if relation E(PQR) and
P,Q, ReX imply either P =@ or = R, then, by virtue of a, b, c,
and d, we have

THEOREM 1. If X is strictly convex, then relations E(xyz) and M (xyz)
are equivalent.

III. Consider now the general case of X not necessarily strictly
convex. We shall establish some properties of the betweenness in M"
and then, basing upon them, we proceed to the characterization of all
linear triples in M". Properties and characterization will be expressed
in terms of the Euclidean geometry.

IL.1. If {=,y, 2} can be translated in E" onto {p, q,r}, then M (xyz)
and M (pqr) are equivalent.

This follows from the fact that every translation in E™ preserves
parallelism.

m1.2. If {z,y,2} and {z',y,2'} are homothetic in E" with respect
to the point y, then M (xyz) and M (x'yz') are equivalent.

This follows from the identities Pry = Px'y, Pxz = Px'z’, Pyz
= Pyz’, and from the proportionality ay:2z:yz=a'y:2'2 :y2' of
the distances.

Denote by R(a,b), where a and b are two distinct points of E",
the Euclidean ray with the initial point a passing through the point b.

IIL.3. If M(xyz) and = # y # z, then the set L = R(y,z2) v R(y, x)
is linear in M".

Proof. Take three points p, q,reL. In virtue of II.d, each of the
sets R(y,») and R(y, ) is linear in M". Hence, in order to prove that
{p, q,r} i8 linear, it remains to consider the case when p and ¢ belong
to one ray and r to another. Without loss of generality we may assume
that reR(y, 2), p,qeR(y, 2) and E(yqp). Choose a point z'« R(y, ) and
a point 2'eR(y,z2) such that E(ypz’'), E(yrz') and yx:yz = yx' : yz'.
In view of III.2 we then have M (z'yz’). The betweenness FE(z’'xy)
implies M (z'py), and since M (x'yz’') was just proved, we infer by the
transitivity that M (pyz’). This last relation and M (yrz’), which follows
from E(yrz’'), imply M (pyr). Finally, M (pyr) and M (pqy), which follows
from E(pqy), yields M (pqr).
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We shall yet examine linearity of triples of the form {p, 0, ¢}, where
P, qeZ. Denote by ¢(x), xeZX, the point of E" symmetric to  with respect
to the point 0. Since X was assumed symmetric with respect to 0, p(x)el'.

III4. If p,qeX, then M (p0Oq) holds if and only if the segment [p, ¢(q)]
18 contained in X.

Proof. The quadruple {p,q,¢(p),®(q)} is a parallelogram with
the centre 0. Denote by P the middle-point of the segment [q, ¢(p)].

— —>

Then the vector OP is parallel to the vector pg, and OP = }pq. If
[p, p(q)] =« 2, then [q, ¢(p)] =« & and PeX, and we have

m(p,0)+m(0,q) =1+1 =2 = pg/OP = m(p, ¢).

Conversely, if M (p0q) holds, we have, in virtue of I1.a, £ (Pp0PpqPO0q).
Moreover, Pp0 = ¢(p), POg = q and 0 Ppq = 4pq. Hence Ppq is the
middle-point of the segment [g¢, ¢(p)]. If ¢ = ¢(p), then Ppq = ¢q and
80 [p, ¢(q)] is a degenerated segment contained in 2. And if ¢ # ¢(p),
then, according to ILDb, ¢(p) # Ppq # q # ¢(p), and so the segment
[p, ¢(q)] has three different points in common with the surface X.

The following generalization of Theorem 1 follows now immediately
from III.1, III.3 and IIL.4:

THEOREM 2. If X is convex (not necessarily strictly convex), then M (xyz)
holds if and only if there exist points &' <R(y, x) and 2' e R(y, z) such that
[t(2'), ptr(2')] =« X, where T is the tramslation which transforms y in O.

COROLLARY. @iven three points a,b,ceE" (not linear in E"), where
n > 2, one can define in E" a Minkowski’s metric in such a way that
M (abc) holds.

Indeed, it suffices to take X to be a convex surface with the centre
in the point 0 = b and containing the segment [a, ¢(c)].
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