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One of the fundamental theorems of the classical probability theory
is. the Kolmogoroff theorem on the consistent family of Borel measures
in ﬁmte Cartesian products X 2,, @ = T, of metric separable complete

spaces Q,, teT. The theorem states that every measure uz; on X Q,
of such a family is of the form ted

pa(B) =pu(Bx X 2,
teT—-G"

where u is a uniquely defined measure on the o-field of cylindric sets in
X Q,, and B stands for a Borel set in X Q,.

teT
It is known that in the non-commuta.tive probability theory the

role of Cartesian products of probability spaces is played by
tensor products of Hilbert spaces and the role of probability measures
is played by states on the lattice of orthogonal projectors of some von
Neumann algebra A. In the case A = B(H), where H is a separable Hilbert
space, these states are called Qleason measures. In [4] von Neumann intro-

duced two kinds of infinite tensor products of Hilbert spaces: ® H, and
teT

®PH,, and called them complete and incomplets, respectively. Since both
teT

of these spaces are topologically complete, his terminology has not gen-

erally been accepted. The space ®”H, is usually referred to as a stabilized
teT

tensor product of H, and ® H,, simply, as a tensor product.

Nowak showed (see [3]) that conditions of consistency for a family
of Gleason measures are not sufficient for existence of a state x on ®PH,
such that teT

(1) pe(P) = p(Pe ® I,),
teT'-G

where P is a projector in ® H; and I, is the identity in H,.

tet?
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In the present paper we give necessary and sufficient conditions
for existence of a measure 4 on a stabilized tensor product of a countable
number of separable Hilbert spaces and satisfying condition (1). For
the sake of clarity of our considerations we recall some basic definitions.

(-]
Let I'y be a subset of the Cartesian product X H; which consists of
sequences {z;} such that i=1

<}

D=l < oo.
f=1

In the set I, we introduce an equivalence relation ~ putting
{&} ~ {y} if
[
D L= (@, 9l < oo.

fml

Let D be some equivalence class with respect to ~. Denote an ele-
ment {r;}eD by ® =z; (or by 92,0 ...) and construct formal finite
=1

linear combinations of such elements
n )
k
Zak®w$ )’
k=1 $=1
where a, are complex numbers. We identify an element
w1@ se e @awnswn_'_la oo e
with
a'wle oee @wnewn_'_l@ oo.’
and an element
2,8 ...0(2,+9Y,)82,,,© ...

with the sum

-’31@ eee anew“+l® LR +$1® LR N Qyn®$ﬂ+l@ (XX ]

In the set of such combinations of @ x; we introduce an inner product
fm=1

m oo

(@) (Do, Yo s =3 3 []e, )
k

=1 4=1 j=1 1= k=1 j=1 i=1

-

and then complete the obtained linear unitary space in the metric deter-
mined by the inner product (2).
Definition 1. The space constructed as above is called a D-stabi-

©o
lized tensor product of Hilbert spaces H; and is denoted by @ H,.

i=1
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This definition is formulated in the spirit of the paper [4]. The other
known definition of the concept involves the notion of inductive limit
of inductive systems (see, for instance, [2]).

In [4] von Neumann showed that ®PH, is a Hilbert space and that

t=1

it is separable if and only if all the H, are separable. Moreover, the class D
contains a sequence {a;} such that |la;]| = 1 for every natural i. The set
of elements of the form

$1® soe @wkaak+l®ak+2® e

is linearly dense in ®”H,, and the elements
i=1

10 ... 06k0a,, 1©6;,,0 ...,

where {¢{} is an orthonormal basis in H;, ¢} = a;, form a standard ortho-

normal basis in ®PH;. Since both the class D and the space ®PH;

f=1 t=1
are umquely determined by a given sequence (a) = {a;} we shall also

denote GQDII;.by' QD“”II}
=1
Assume that A, for 1 =1, 2,... is a linear bounded operator in H;

such that for every sequence {a:} € D the sequence {4,z;} belongs to D
and

D, 1= llAd) < oo.

fm=1

Then there exists a unique linear bounded operator ® A; such that
i=1

Q@ A(Q z) = @ Aya,.

=1 i=1 =1

In particular, the operators

n oo
X 11‘0 ® 1} and Q; 11i® GD IDa

i=1 femn+1 i=1 {=n+l
where I, is the identity in H;, and P, is a projection on a one-dimensional

subspace of H, generated by a vector a;, are well defined in ®@H, for
t=1

any finite sequence 4,, 4,,..., 4,. It can easily be verified that a pro-

jection P, on the subspace generated by

V=2¢6,9®...9€,® Q a;
fmn41
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is identical with an operator

®P®®P

i=1 i=n+1

Definition 2. By a Gleason measure on a separable Hilbert space H
we understand a function y which maps the lattice of projectors of B(H)
into the interval {0,1)> so that

(i) p) =1, u0) =0,
(ii) 7 (ZP,) = 2 p(P;) for mutually orthogonal P;.
j=1 J=1

In [1] Gleason proved that if dimH > 3, then for a given measure u
there exists a trace-class self-adjoint non-negative operator S, such that
Tr8, = 1and

u(P) =TrS,P for every projector P.

- We shall call S, a density operator of u. Every Gleason measure u
satisties the cond.ltlon of normality:

p(supP;) = supu(P;) for any increasing net of projéctors Py,
J J :

Assume that for every finite set @ of natural numbers the Gleason
measure ug on ®H is given.

Defmltlon 3. The family of: measures ke is called consistent if
pa(P) = pg p(Pe ®1I),
: ieF

where G and F are arbitrary disjoint finite sets of natural numbers.

LuMMA 1. Let ug be a consistent family of Gleason measures and let G,
be the set of numbers 1,2, ..., n. Then the sequence of operators

Q —SGn® ® Pa’

t=n+1

where Sg, 18 a density operator of measure g,y converges weakly to some

self-adjoint mon-negative bounded operator in 2@ H,.
i=1
Proof. Observe that @, are density operators. Indeed, it follows

from the form of @, that they are self-adjoint and non-negative. One
can easily calculate that Tr@, = TrS§; = 1.
Denote by g, a Gleason measure corresponding to @,. Let E; be

n
an arbitrary projector in ® H,;. Making use of Gleason’s theorem one can
i=1
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verify that
(3) 9, (Eg, ® ®+I i) = pa,(Bg,),
(4) 0.(Bg, 0P, , 6P, , ©...) = 0, (g0 ® L.

f=n41

Consider an arbitrary finite system v,, v,, ..., v, of vectors of a stand-
ard basis and a linear combination of these vectors

r

v = Zaj'o,, where Zr‘la,la = 1.

The system being finite, we can assume that all v; are of the form

[+
v; = dlfe ... 060 @ a,.
fmk1
Thus we have

P, =P, oP

w L ap ) ®

o P

ak+2

= EGkQP“kHQP“kH e

where

Wy = ;6010 ... @61+ ... +a670...06% and Eg =P, .

For n > k using (3) and (4) we have
<(Qui19)9) = tnss(Po) = uy1(Bg,Py, 0 ... 0o 0P, 0 ® 1)

%n+1 fmnt2

= bey,(Bg,®Pq,, 8 ... 0P 0P, )

< g, (Bg,oP,, ®... P, ol,,,)

= ig, (Fo,®Pay,,® - ©Pa,)

= Qn(EGkQPaH_l GPan®‘ ®+lIi) = gn(P,) = (an’ v).
=n

Thus, if » is a linear combination of vectors of the standard basis
and |jv|| = 1, then the sequence (@,v, v) is convergent. It is easy to show
that this holds for any v being a linear combination of vectors of the
standard basis. Since the norms of operators @, are mutually bounded,

we have the convergence of (Q,v, v) for any vectorv of ®® H;. Using the
f=1
polarization formula we obtain the convergence of bilinear forms (Q,v, f)

for any v, f ¢ ®® H,. Thus the sequence @, is weakly convergent to some
i=1

bounded linear operator 8, which is evidently self-adjoint and non-

negative.

LeMMA 2. If for a consistent family of Gleason measures there exists

on ®% H; a Gleason measure u which satisfies (1), then Q, — 8, where 8

=1

10 — Colloquium Mathematicum XXXIX.1
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i8 the density operator of the measure u, and Q, are the operators defined as
above. \

Proof. Using (1) and (3) we have

® I)).

=n+41

Qn(Ean@i ® I;) = p(Eq

n@
=n+41 {

For n > k we put

...oP, & @ I;.

i=n+1

P, = EGk@PakH@

{P,} is a decreasing sequence of projectors with a limit

.P =EGI\‘® ® Pai'
t=k+1

Thus P is the infimum of {P,} and we have
(5) Limu(P,) = u(P).

f—»00

Taking » such as in the proof of Lemma 1 we can estimate
(@n?, ©) — (82, 9)| = Ig,(Py) —ps(P,)| = |p(P,)—p(P) <& for n> N,

which exists by (5). By the same reasoning as in Lemma 1 we obtain @, — S.
THEOREM 1. For a given consistent family of Gleason measures (ug)

there exists its extension on ® H, (i.e., a measure u for which (1) holds)
i=1

if and only if one of the following two equivalent conditions is satisfied:
(A) Q.— 8, where Tr8 =1,

: i i
(B) E Lm (8; é'e ... 6% ea,,, 0 ... @a,,
K {f10eeerip)
i i
el e...egkoa,,, 0...0a,) =1.

Proof. It is easy to see that TrS is equal to the sum in (B). Thus
(A) = (B). By Lemma 1 we have (B) = (A). The necessity of condition (A)
is evident by Lemma 2. Thus we must prove only the sufficiency of (A).
Assume that (A) is satisfied. Then S is a density operator of some

k

measure u. We show that for every projector E; in ® H;
i=1

6 By o ® L) = po (Es).
(6) p(Eg, Qi-§+l 1) = pg,(Eq,)
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We have, for some orthonormal basis {v;},

(6') (EGk ® ® I) = TI‘(S EG e ® 1‘)

i=k+1 Tm=k+1

=2(S-Eok ® ® I,o,,v,) =2]jm(Q,,-E,,k J ® Ii'v,-,'o,-)

MTT(So ‘B, © @ I,) = hml‘a (e, © ® L) = pg, (Eg,).

i=k+1 i=k+1
Similarly,
k ) k
(6”) (S L;—E;)e @ I)<pg(®IL;—Ey).
i=1 itmk+1 i=1
But
,‘(EGk@ ® I‘f)+”(( ®I EGk) ® ® I) =1

i=k+1

k
= I‘(n’k (EGk) + ,“Gk( i®11‘ - Eak) )

which proves the equality in (6’) and (6’’). Thus condition (6) is proved,
and so is Theorem 1.
THEOREM 2. Let a consistent family of Gleason measures (ug) have

oo 00
an extension p® on QPH,. Then it has an extension u® on ®RVH,
i=1 i=1

tf and only if the sequences (a) = {a;} and (b) = {b;} satisfy the condition

(*) D 11—(ay, B)l| < oo.

i=1

Proof. If 2 11— (a;, b)| is also convergent, then ®“')H and ®“”H‘

fm=1 i=1 i=1
are the same spaces. Thus assume that () holds, but

D 11—(ay, b))l = oo.
i=1

Then (cf. [4]) there exists a sequence (2) = {#;} of complex numbers
such that

= o]

ol =1, D1—z|=oc, and @YH;=@"H,

i=) im] =1

where (2a) = {z;a,}. Assume that the family (u;) has an extension u®
00
on ®@ H,. Using Theorem 1 we have
i=1
Q@ = 8g eP, . oP — 89,

n+1 "n+2
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where 8 is a density operator of u®. We show now that the sequence

(2a) _
¢ = SGn ® P‘n+1“n+l P'n+lan+2 ®

converges weakly to 8, where 8¢ is a density operator of some meas-
ure 4. Observe that Q*¥ is of the form

sta) — U(z)su(z)—l ,

where U® is an isometry of ®“®H, onto ®** H, given by the formula

[ <] [ <]
U9 @ o, = @ 2.

fml i=1

(The operators U® were defined and studied in [4].) Putting
se) — goge ge-1

we have

](ng)'vrf) - (S(“)'D,f)l = |( U(z)qua) U(z)—l'v’f) —(U(z)s(a) U(z)_l"’f)'
1@ TOo, ) — (ST, TO-1 )<

for n > N, where N is chosen for U®~'v and U®~'f in view of Q¥ — 8¢,
Since U® is a unitary operator, we have

Tr8¢ = Tr8* =1.
Suppose now that for the sequence {b;} condition () is not satisfied
and on @Y H; and ®“H; there exist measures u® and u®, respec-

tively, for which (1) holds. Thus for some projector P of the form
P=P, o...0P, ePbk+1 ®Pbk+2

we have u®(P) = > 0. Then, obviously,

s (P, e...0P, . ®Po,, ®...e P, © ® I)>7>0,
t=n+1
and hence

ba, (P, ® ... 8P, @Pt,k+1 ® ... ean) =>n>0.

On the other hand, consider a sequence of projectors Pi? in @ “H,
of the form =1

PP =P, e...0P, 0P, ©..0P, © ® I,.

{emn41
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This sequence is decreasing and its limit is 0, but
pOPY) = pg, (P, ©...0P, 8P,  &...0P, )>5>0

which contradicts the normality of u(®.

One of the specially important cases of consistent families of measures
are product measures. A measure x4 on H,e H, is called a product of meas-
ures u, and u, if, for any projector P of the form P = P,8 P,,

p(P) = py(P1) - ps2(Py).

It is well known that the density operator § of the measure u,eu,
is equal to S,®8,. If for the family of product measures there exists its

extension on ®“H;, we shall say that there exists a product measure @@ y;.
i=1 i=1

We have the following.

THEOREM 3. A product measure @ u, on @ H, exists if and only
t=1 =1
if one of the following two equivalent conditions is satisfied:

©0

() D 11— (8ia;, )| < oo,

i=1

where 8; i8 a density operator corresponding to the measure u,,

00 o] ki
(D) Z|1—m;?xl§‘|< oo and le—l(ai,e,- )|[< o0,

i=1 i=1

where {5}, is the sequence of eigenvalues of an operator 8;, and ef‘ the 18
eigenvector of S; corresponding to the maximal A%,
Proof. Assume that a measure

00

p=0y

i=1

exists. Then for some projector P of the form

P=Peo... ®P¢k®P eP, ®...

k41 Op42

we have u(P)> 0. But
p(P) = limu(P,),

n—>00
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where
P, =P,e...eP, ®P¢k+x ..eP, ® ‘a?ﬂ I,,
p(P,) = n (8;e;, ) (8;a;, a;),
f=1 i=k+1
k oo
lim u(P,) = ”(Siei’ AR ” (8;a;y a;).
n—>0o i=1 i=k+1
Thus
[ 8:a,8)>0
i=k+1

which is equivalent to (C). Assume that (C) holds. Then

e ]
S = ® S{
i=1
- ]
is a well-defined self-adjoint non-negative operator in ®® H, and it
is a limit of a sequence of operators =1

Q, =8,8...08,sP, oP, .®...

°n+1 Gn 42

It is easy to calculate that TrS = 1. Thus, by Theorem 1, our family

o0
of product measures has an extension on ®@H,.
One can verify that (C) = (D). =1
Assume now that (D) holds. Then

le—(S,-ef‘,ef‘)l = 211 maxl"|< 0o

=1

k
and the family ( ® 4;) has an extension on ® “ H From the second

1=1

part of cond1t10n (D) it follows that the family ( ® 4;) has an extension
also on ®“"H (by Theorem 2).

i=1

COROLLARY. If all u; are pure slaies (i e., their density operators S;
are of the form 8; = P, ), then the measure ®("’ p; exists if and only if

i=1

le—l(en &)l < oo.
i=1
Remark. The consistent family of Gleason measures described in [3]
is a family of product measures for which (S;a;, a;) = 0 for ¢ > 2. Obvi-
ously, this family does not satisfy condition (C) and, therefore, cannot have

[ -
an extension on ®@H,.
fm]
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