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1. Introduction. Let G be a real-rank one semisimple Lie group. Fix
a maximal compact subgroup K, a minimal parabolic subgroup P = NAM,
and a representative m* € K for the action of the Weyl group of (G, A). Let
7 be a finite-dimensional irreducible representation of P, and let (7., H,)
be the induced principal series representation of G.

Let 7w be an irreducible unitary representation of M N whose restriction
to N is non-trivial. In this paper we study the M N Whittaker transform of
C® functions ¢ € H.,. This transform is (formally) defined by the operator-
valued integral

(1.1) We(o) = f¢(m"n)1r(n)dn.
N

The main problems that we address are the convergence of this integral
(in a suitable operator topology), its analytic continuation (as a function of
the A parameter of v), and the functional equation it satisfies (arising from
the intertwining operator between 7, and 7).

To solve these problems, we consider general operators =(f) defined by
the sesquilinear form

(1.2) [ f(n)(x(n)é,n)dn,
N

where f € L] .(N) but is not necessarily integrable at infinity. By general
results of Howe—Moore [HM79], one knows that for some large value of p and
a dense set of vectors £, 7, the matrix entry functions (7(n)&, n) are in LP(N)
modulo the projective kernel of 7. This suggests that #(f) can exist, at least
as an unbounded operator, even if f does not decay quite rapidly enough to
be integrable at infinity. This is the case for A-homogeneous functions (e.g.
the kernels for the Kunze-Stein intertwining operators), which can never be

integrable both at 1 and at infinity.
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The following question then arises: If g € L!(N) is such that the opera-
tors 7(f) and 7(f * g) exist in a generalized sense, then does one have

(1.3) ©(f*g) =x(f)x(9)

(here * denotes convolution on N) as operators on some dense domain? The
validity of this equation is the key point in obtaining a functional equation
for the Whittaker transform.

Our results are closely related to those of Schiffmann [Sch71], who con-
sidered only irreducible representations of N and did not explicitly use the
decay of the matrix entries of the representations. The present paper owes
a major debt to Schiffmann’s work, although our basic strategy for defining
the “generalized Fourier transform” =(f) and proving (1.3) is different.

Our interest in extending Schiffmann’s results to allow representations of
M N rather than just N comes from the fact that (M N, M) is a Gelfand pair
([Kor82]; cf. [BJR89]). As shown by Faraut [Far82], the spherical Fourier
analysis on this pair can be applied to harmonic analysis on the Rieman-
nian symmetric space G/K via the Iwasawa decomposition G = NAK. Fa-
raut’s approach emphasizes the differential equations satisfied by spherical
functions. The representation-theoretic approach of this paper provides an
alternative derivation of the functional equation and analytic continuation
for Faraut’s M-spherical Whittaker vectors. _

The paper is organized as follows: In Section 3 we describe models for the
infinite-dimensional irreducible representations 7 of M N and in Section 4 we
obtain decay estimates for matrix entry functions when £, 7 are differentiable
vectors for 7 (Theorems 4.1 and 4.6). We use these estimates in Section 5 to
prove that integral (1.2) is absolutely convergent when f is locally integrable
and satisfies a weak decay condition at infinity (expressed in terms of the
homogeneous gauge on N). The operator 7(f) although unbounded on
H(w), is continuous from the space of C™ vectors for 7 to its dual, for an
explicit value of r (cf. Theorems 5.1 and 5.2).

We apply this general result in two situations. First, in Section 6 where
f is an A-homogeneous function on N obtained from a Schwartz function
on N by Fourier transform along A orbits. Then in Section 7 we prove that
integral (1.1) converges absolutely (as a sesquilinear form), for A in a half-
plane which includes the imaginary axis. Following Schiffmann (loc. cit.),
we obtain the analytic continuation of this integral in the A parameter of ~.

Finally, in Section 8 we prove that equation (1.3) holds for f a homoge-
neous kernel and g a smooth principal series function.

When G = SL(2,R), the irreducible representations of M N are one-
dimensional and our methods based on decay of matrix entries do not apply.
The Whittaker transform in this case is described in [Far82, §I]. In this
paper we shall assume that dimG/K > 2. For references to the literature
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on Whittaker transforms associated with one-dimensional representations of
N for general semisimple groups and parabolic subgroups, cf. [Mat88]. We
thank Jacek Dziubaiiski for correcting some inaccuracies in a preliminary
version of this paper.

Notation. We denote the real numbers, complex numbers, quaternions,
and octonions (Cayley numbers) by R, C, H, and O, respectively. If F is one
of these division algebras, then Jz denotes the imaginary part of an element
z € F. If z € C, then Rz denotes the real part of z. If z € R, then |z]
denotes the largest integer n < z.

2. Differentiable vectors. Our treatment of Whittaker transforms
will make essential use of scales of spaces of differentiable vectors for a rep-
resentation. We recall the following notation and results [Goo69], [Goo70].

Let G be any Lie group with Lie algebra g, and let U(g) be the universal
enveloping algebra of the complexification of g. Let 7 be a strongly contin-
uous representation of G on a Banach space H(x). Let H"(r) be the space
of r times differentiable vectors for # with norm ||v]|,. These spaces are
initially defined for positive integers r in terms of strong differentiability of
the vector-valued function g — 7(g)v, and for negative r by duality. These
spaces are G-invariant and G acts boundedly, relative to the norm ||v||,. Let

H2(x) = [ H"(x)
r>0

be the space of C® vectors for 7. There is a canonical representation of
U(g) on H*®(x) that we also denote by .

When 7 is unitary, then the inner product (-,-) on H(x) extends to a
continuous sesquilinear pairing between H*°(7) and

H=(x) = | H'(x).
reR
We use this pairing to identify H~"(7) with the dual space of H" (=) for all
r €R. '

For multiples of the regular representation of a compact group there is
the following vector-valued version of the Sobolev lemma.

LEMMA 2.1. Let M be a compact Lie group. Let £ be a Hilbert space
(finite or infinite-dimensional), and let = be the left or right regular repre-
sentation of M on L*(K; ). Letr,k be integers such thatr > k+ 1 dim M.
Then there is a continuous embedding

H™(7) C C¥(M;€)

(where C¥(M; £) is the space of k times strongly differentiable £ -valued func-
tions on M).
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Proof. It is enough to consider the case where = is the right regular
representation, since the map m — m™! interchanges the left and right
actions. Let R be the right regular representation of M on scalar-valued
functions (the case dim &£ = 1). From [Wal73, Lemma 5.7.5] we know that
ifr> %dimM then there is a constant C, < oo so that

(2.1) |f(m)] < C:llfll»

for f € H"(R). Furthermore, f is continuous on M. To extend this result
to the vector-valued case, we may assume that £ = 2. Then 7 is a multiple
of R, and f € H"(7) corresponds to a sequence {f,} C H"(R) such that

Y Wfall2 = 112 < oo

n=1

Suppose r > 1 dim M. Then each f, is continuous and from (2.1) we have

Y fa(m)? < CofII?
n=1

for m € M. It follows that the function m — {f,(m)} is continuous from
M to 2. Iterating this argument for the derivatives of f yields the lemma.
m

3. Representations of M N. We recall from [KLW77] the construction
of explicit models of the irreducible unitary representations of M N. These
models furnish oscillatory integral formulas for the matrix entries, to which
we will apply stationary-phase estimates.

We begin by recalling the fine structure of the group N (cf. [Hel70],
[Sch71], [Cow82], [CK83]). Let B be the Cartan-Killing form on G, let 8
be the indivisible positive root of a on n, and let H € a be the coroot to
(B(H) = 2). Define an inner product on n by

(3.1) (X,Y)=-8B(X,6Y)/B(H,H),

where 6 is the Cartan involution on G. Denote the norm on n associated
with this inner product by | - |. There is an orthogonal splitting

(3.2) n=vdz

where the adjoint A action is multiplication by a? on v and multiplication
by a%# on z. Set p = dimv and ¢ = dimz. By classification of rank-one
symmetric spaces, z = J(F), where F = R,C,H, or O. Since ad H acts
by 2 on v and by 4 on z the normalizing constant 8/B(H, H) in (3.1) is
(p+49)7".

For Y € v, Z € z, define n(Y,Z) = exp(2Y + Z). Fort > 0 define
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a; = exp(1log(t)H) and set
6: = Ad(at)lN .

Then é; is a group of dilationson N, scaling by t on v and by t? on z. Define
a gauge function N on N by

(33) N(n(Y,2)) = (IY|* +|2*)"/*.
Then N (6:n) = tN(n) and
(3:4) N(nn') S N(n) + N(n)

for n,n’ € N. Set Q = p + 2q, the homogeneous dimension of N relative to
the group of dilations {é; | t > 0}.

Fix a representative m* for the non-trivial element of the Weyl group
W(a,g). The A components in the Iwasawa and Bruhat factorizations of
m*n can be expressed in terms of the norm and gauge functions as follows.
LetY €ev,Z€z,and 1 #n€ N. Then

(3.5) m*n(Y,Z) € Na, K, t~%=(1+|Y|>)?+|2)?,

(3.6) m*n € NMa§(N), t=N(n)"?

(cf. [Sch71, Prop. 2.1]; note that | X|? = 2Q(X) in Schiffmann’s notation
and we are using N in place of 6(N)).

We now describe the holomorphically-induced model for the irreducible
representations of N when z # 0. To handle the three cases F = C,H, O in
a uniform way, it is convenient to view N as a nilpotent group of type H
(cf. [KR83]). For h € z define a skew-symmetric operator J, on v by
(3.7) (JnX,Y) = (h,[X,Y]), X,YEVWV.

From the invariance of the Killing form we have J, X = [A,0X). Thus J2X =
[h,0[h,0X]]) = [[h,0h]), X] = B([h,0h]))X, since [k, X] = 0 and [h,0h] € a.
But
B([h, 6r]) = 2B(H, [h,0h])/ B(H, H) = 2B((H, k), 6k)/ B(H, H)
Since [H, h] = 26(H)h = 4h, we see that
JEX = —|h’X.

(The normalizing factor in (3.1) is determined by this relation.) Thus every
non-zero vector h € z defines a complez structure J, = |h|~1J; on v and a

Hermitian inner product
(38) (X7 Y)h = 'h'(X,Y) - i(Jhx, Y) .
Let | X|s = |h|'/?|X| be the norm associated with this inner product.

Let h € z\ {0}. A smooth function f on v is h-holomorphic if df o Jh =
idf. Denote by P} (v) the space of h-holomorphic homogeneous polynomials
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of degree j. This is the span of the monomials
X = (X, W), Wev.

Set r = |h| and du, = e~("/DI*I* dy, where dv is Lebesgue measure on v.
Let F,(v) be the space of all h-holomorphic functions in L?(v,pu,). Then
Fr(v) is the Hilbert direct sum of the mutually orthogonal subspaces P} (v).

We define a unitary representation 7, of N on F, by the multiplier
action

(3.9) Th(exp(Y + 2))f(X) = pn(Y, X)e!® 2D (X +Y),
forY € v, Z € z, where the multiplier is
pa(Y, X) = exp {~1(Y +2X,Y)n} .

This representation is irreducible and is uniquely determined up to unitary
equivalence by its central character x,(exp Z) = e'{"2) (cf. [Fol89, Sec-
tion 1.6])). Note that when dimz > 1 then “Planck’s constant” k is a vector.

This realization of the representation of N with central character xj is
particularly convenient for determining the action of the group M A on N.
We will write g- X = Ad(g)X for X € n and g € M A. The splitting in (3.2)
is invariant under the adjoint action of MA. If m € M and h € z, then

m - JpX = Ad(m)[h,0X]=[m - h,0(m - X)] = Jp.n(m - X)
for X € v, while the action of A commutes with J,. Hence
(m-X,m-Y)pn=(X,Y), (a-X,a-Y) =(X,Y)an,

for X,Y € v,a € A and m € M. It follows that the Hermitian forms on v
transform under ¢ € M A by

(3.10) (9:-X,9-Y)og)-n = (X, Y)n.
Let f € Fn(v). Set

T(9)f(X)=a PP f(g7" - X)
for g = ma € M A. Then we see from (3.9) and (3.10) that T'(g) : Fn(v) —
Fo(g)-n(V) is a unitary map and that

(3.11) T(g)wn(n) = To(q).n(gng~1)T(g)
for g € MA and n € N (cf. [KR83, Lemma 2.1]). Obviously we have
T(g9)oT(g9') = T(gg') for g,9' € M A.

We can now describe the unitary dual of MN in terms of the unitary
dual N by the Mackey machine, as follows. For h € n, let M, be the
stabilizer of A in M and denote by T}, the restriction of the map T to M.

By (3.11) we can extend =, for 0 # h € z, from N to a representation o},
of MyN by

(3.12) on(mn) = Tp(m)rs(n).
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For h € v there are also the one-dimensional representations x5 of N given
by .
rn(exp X) = e X)
for X € n. We extend these representations to My N by o,(mn) = mx(n).
Let h # 0 be either in v or in z. Taking any irreducible representation
of M;, on a finite-dimensional Hilbert space £,, we define a representation

ph,r of My N by
phr(mn) =F(m)@ op(mn) forme My, n€EN,
where T is the dual representation to 7. Set

h,r = Indpf\ (o).

Here we take the representation space to be all L? functions f : M —
H(pn,r) such that

f(km) = pp (k) f(m) forme M, k€ M,
with inner product

(fo)= [ (f(=),9(2))dz,

MM

where dZ denotes the invariant measure on M} \ M. In this realization the
action of M N is given by

(3.13) Th+(nm)f(z) = I ® mp(znz™1)f(zm)

for m,z € M, n € N. The representations 7} , are irreducible, and every
infinite-dimensional irreducible representation of M N is obtained by this

construction. The representations 7 , and 7 ,+ are equivalent iff 7 ~ 7/
and |h| = |#'| (h = k' if F = C and h € 2z) (cf. [KLW77], [Cyg81)).

ExAMPLE 3.1 (Spherical representations). The representation 7 = 7 ,
is sphericalif it contains an M-fixed vector £,. By Frobenius reciprocity, this
occurs iff the representation o, of M), contains the trivial representation.

Case 1: h € z. Then o, contains the trivial representation iff 7 occurs
in Tp. Now T, = ) 7j, where 7; is the restriction of T}, to the space of
homogeneous h-holomorphic polynomials of degree j. But 7; is irreducible.
Indeed, by Kostant’s double transitivity theorem (cf. [Wal73, §8.11.3]) M),
acts transitively on the unit sphere in v and hence the complexification of
M}, acts transitively on v \ {0}. Thus = = =}, is spherical iff 7 = 7; for
some j. We will denote this representation by = ;, for j = 0,1,2... Up to
equivalence it only depends on the pair (|A|, j) (resp. (h, j), in case F = C).

Let {¢; | ¢ = 1,...,d;} be an orthonormal basis for for P;(v) and denote
by €; the linear functional f — (f,e;). In the realization of = above

f«(m)=dj-1/223;®e.' forallme M.
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Case 2: h € v. Then = is spherical iff 7 is trivial. Denote this represen-
tation by 7, . Up to equivalence it only depends on |h|. In the realization
of r above £,(m) =1 for all m € M.

Given f,g € H(7p,,) we define the matrix entry function

(3.14) ¥1,9(2) = (Th,+(2)f, 9)

for £ € NM. Using the explicit formula for the inner product on H(w ),
we can express these functions as integrals over M;, \ M of matrix entries of
7h. When 0 # h € z, we obtain

(3.15)  drg(nm)= [ PEI(I@ my(expa-Y)f(am),g(z)) dF
Ma\M

form € M and n = exp(Y + Z), with Y € v, Z € z. When h € v, the
integral formula becomes

(3.16) brg(nm)= [ eV (f(zm),g(2)) dz .
My\M

EXAMPLE 3.2 (Spherical functions). When 7 is a spherical representation
and f = g = € is a normalized M-fixed vector, we denote the matrix entry
by ¥x. All the bounded spherical functions for the pair (M N, M) are of
this form. From the explicit formulas for £, in Example 3.1 we have the
following integral representations of .

Case 1: For the spherical representations 7 = 7}, j with 0 # h € 2, let

E;(h) be the orthogonal projection onto 'P;’;(v). Then
(r(n)éx(z),&x(2)) = dj’l Z(ﬂh(znz‘l)e;,e;) = d;l tr(E;(h)mh(znz™1)).

Hence we have the integral representation

(3.17) Yr(n) = d;’l f ' m=-2) tr(Ej(h)mp(expz - Y)) dE
Mp\M
for n =exp(Y + Z), withY € v, Z € z.

In case F = C, one has M}, = M and no integration over M is needed in
(3.17). In fact, this is true for the cases F = H or O also. To see this, rewrite
the integral as a double integral over the stabilizer subgroup My and the
quotient M/My. Let Sy(r) be the sphere of radius r in z with normalized
invariant measure d{. Since My - h = S3(|h|) by the double transitivity
theorem, (3.17) factors as

Yx(n) = {dj;1 f tr(Ej(h)mh(expz - Y)) dz}{ f e'¢:2) d(} .
M S2(|h])

But by the double transitivity theorem again, M -Y = M), - Y, so we may
replace integration over M by integration over M. In the integrand we
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have
tr(Ej(h)rh(expz - Y)) = tr(E;(h)T(z)mn(exp Y)T(z 1))
= tr(E;j(h)rr(expY))

for ¢ € M),. Hence we conclude that

(3.18)  a(exp(Y + Z)) = d; tr(E;(h)ma(exp Y)){ [ €<Pag)
$2(1hD)
for all three cases F = C,H and O.

Case 2: For the spherical representations 7 = w9 with 0 £ h € v we
have

(3.19) Yx(n) = f ") dp,
S1(1hl)

where §(7) is the sphere of radius r in v with normalized invariant measure
dn.

These functions are calculated in terms of special functions (Bessel func-
tions and Laguerre polynomials) in [Kor82] using the differential equa-
tions satisfied by spherical functions (cf. [BJR89, §8] for the representation-
theoretic approach).

4. Decay of matrix entries. In this section we obtain decay estimates
for the smooth matrix entries of infinite-dimensional irreducible unitary rep-
resentations of M N. These estimates are more precise quantitative versions,
in this special case, of the general results of Howe and Moore ([HM79]) for
irreducible unitary representations of algebraic groups.

THEOREM 4.1. Assume ¢ = dimz > 0. Definey = 0 if ¢ = 1, and
Ty=3¢-3+ %dimM ifg> 1. Fiz 0 # h € z. Then for every integer r > v
there is a constant C such that

(41)  |¥rg(exp(Y + 2)) < C(L+|Y)T*(1+12])~ D2 £l gl
for all f,g € H®(7h,y) and Y € v, Z € z, where s = |r — 7].

Remark. Estimate (4.1) holds for all f,g € H"(74, ), by the density
of the C™ vectors.

We begin by establishing decay estimates for the matrix entries of =,

LEMMA 4.2. Let 0 # h € 2z, and let r be a positive integer. Then for
u,w € H®(mwp) one has

(4.2) IR IY |"(wa(exp Y Ju, w)| < 27[jull;[|wll,, Y €,

where ||u||, is the norm on H"(7}).
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Proof. Suppose Y,W € v. Then
(mh(exp Y )ma(W)u, w) = (mn(e* Y W)rn(exp Y )u, w)
= (7p(W + [Y,W])mp(expY)u, w) .
Rearranging terms, we obtain the identity
(4.3) i(h, [Y,W])mnr(expY)u, w) = (rh(exp Y )wn(W)u, w)
+ (mh(expY)u, ma(W)w) .

We may iterate this identity as follows. For non-negative integers j, k
set

F(4,k) = (za(expY )mn(W) u, mp(W)*w)
and write Q = i(h,[Y, W]). Then (4.3) implies that

Hence by induction we have

@ k0.0 =Y (§)Fuir-i).

=0
Since |F(j,r — j)| < [W]|"||u||+||w||--j, we thus obtain the estimate

r ~ (r
(44) A, [Y, WD | (ma(exp Y Ju,w)| < W]") (]) llellsllells-; -
j=0
Taking W = J,Y, we have |W| = |h||Y] and (h,[Y,W]) = (JrY,JrY) =
|R|2|Y|2. Also ||u||; < ||u|ly if j < 7. Hence (4.2) follows from estimate (4.4).
.

In case ¢ = 1 one has M;, = M and Theorem 4.1 follows from Lemma
4.2. Now suppose ¢ > 1. Let f € H*®(m, ). Let R be the right regular
representation of M on L*(M;H(my)). Since the restriction of 74, to M
is a subrepresentation of R, Lemma 2.1 implies that f € C®°(M;H(x4)).
Define

Ps(n,m) = (wn,r(n)f)(m)
for n € N and m € M. We know that, for fixed n,®; is a C* function of m
with values in H(7,); we now show that it is jointly differentiable in n,m.

LEMMA 4.3. The map &y from N x M to H(wy) is continuously differ-
entiable, with differential at (n,m) the map

(4'5) X’ Y Qm..,(Ad(n-l)X-l-Y)f(n’ m)

forY € n, X € m. (Here the tangent space to N x M at (n,m) is identified
with n + m via left translation.) Furthermore, f(m) € H(wy), and if
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s>1+4 %dij then there is a constant C so that
(4.6) sup |[f(m)llx < Cl|flls-
meEM

Remark. The norm on the left in (4.6) is on (7)) and the norm on
the right is on H*(7y ;).

Proof. We first observe that @ is continuous from N x M to H(m).
Indeed, since ®#;(n,m) = mp(mnm=1)f(m), this follows from the strong
continuity of the representation x, and the continuity of the function m —
f(m) given by Lemma 2.1.

Consider the partial differential of & relative to N. Since f € H®(my ),
the map Y +— 7, ,(nexpY)f is strongly differentiable from n to H(7 ).
Together with Lemma 2.1 this implies that for fixed m € M, the map
Y — 7w .(nexpY)f(m) is strongly differentiable from n to H(x)). Since

Thr(nexpY)f(m) = mp(mam = )mp(expm - Y) f(m),
it follows that f(m) € H!(r)) and
ma(m-Y)f(m) = (74,.(Y)f)(m).
Since s—-1> %dim M, the Sobolev inequality also gives the estimate
Imn(m - Y)f(m)l| < Cllmn,z(Y)flla-2 < CA+ Y DIISfIls-

Replacing Y by m~! .Y and taking the supremum over Y € n, |Y| = 1, we
obtain (4.6). Furthermore, for fixed n, m we have

(5) _ #stnexot¥,m)= s (a)an o (V))m) = B vy ().
dt),_o

The map X — mp ,(nexp X)f is strongly differentiable from m to
H(7h,+). Since

&(n,mexptX) = mhq(n)mh,-(expt Ad(n) 1 X) f(m),

Lemma 2.1 shows that the map X + &;(n,mexp X) is strongly differen-
tiable from m to H(wp) for each fixed n,m . Its differential is

X - mh o (n)7h (Ad(n)1X) f(m).

Thus the partial maps n — ®¢(n,m) and m — &$¢(n,m) are differentiable.
The partial differentials are continuous H(7p)-valued functions of n, m by
the observations at the beginning of the proof. Hence &; is a jointly C?
function. The formula for its differential follows from the calculations just
made. =

From Lemma 4.3 we next obtain the following pointwise estimates of
Sobolev type for the n action on the components of vectors that are smooth
relative to the joint action of M and N.
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LEMMA 4.4. Let r and k be positive integers such that r > k + %dim M.
Then there is a constant C so that

(4.7) sup |[f(m)llk < Clfll--
meM

Proof. Let T € Uk_1(n). Since r —k+ 1> 1+ 1 dim M, we see from
(4.6) that

sup. 7, (T)f (M)l £ Clixn, o (T)fllr-k41 < C'lfl

for some constants C,C’ independent of f. But
Th,2(T)f(m) = 7 (Ad(m)T) f(m)

and M preserves the norm on Ui_;(n). Hence
1£ ()l < Cmaxiim,o(T)f(m)l

for some constant C independent of m, where T runs over a basis for
Uk-1(n). Combining these two estimates yields the lemma. =

We now turn to the problem of estimating the integrand in formula (3.15)
for the matrix entry vy ,. Let f,g € H®(7}, ;). Define the function

¢(Y1 m) = (wh.‘r(exP Y)f(m)’ g(m))
for Y € v. By Lemma 4.3 we know that ¢ € C®(v x M). We have the
following estimate for its M derivatives.

LEMMA 4.5. Let j,r,s € N withr > s+ j+ 1dim M. Let D € U;(m).
Then there is a constant C independent of f,g and Y so that

(48)  sup [R(D)KY,m)] < C1+ YD fl Nl

Proof. Let X € mand Y € v. From the calculations in Lemma 4.3 we
have

R(X)$(Y,m) = (mhr(expY)mh (e >V X)f(m), g(m))
+ (mn,r(expY) f(m), R(X)g(m)).
But e=*YX = X + [X,Y] + }[[X,Y],Y], so

R(X)$(Y,m) = (wp(expm -Y)my(m - ([X,Y] + %[[X’ Y], Y]))f(m),g(m))
+ (ra(expm - Y)R(X)f(m), g(m))
+ (mn(expm - Y) f(m), R(X)g(m)).
Let s € N. Applying Lemma 4.2, we get the estimate
|R(X)$(Y,m)| < C(1 +|Y])~***|| f(m)|lsllg(m)ll,
+ C(L+ Y ])? | R(X) f(m)|lsllg(m)|ls
+ C(L+ [Y])™?|lf(m)|sl|R(X )g(m)|s ,
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where the constant C does not depend on f,gor Y. Henceif r > s+ 1+
321 dim M then Lemma 4.4 furnishes the bound

IR(X)$(Y,m)| < C(1+|Y])~=**2||fl-lgll-

where the constant C does not depend on f, g or Y. This proves the lemma
when j = 1. Now iterate this calculation to obtain (4.8) for elements of
order jin U(m). m

Completion of proof of Theorem 4.1. Recall that by formula
(3.15) we have

(4.9) Yrolexp(Y +2))= [ rmAg(Y, m)dm.
Mu\M

By Kostant’s Double Transivity Theotem (cf. [Wal73, §8.11.3]) the orbit
M - h is the (¢ — 1)-sphere of radius |h| in v. The integral (3.15) is thus
the Fourier transform of a C*> density on a (¢ — 1)-dimensional sphere.
Estimate (4.1) follows by [Hor83, Theorems 7.7.6 and 7.7.14] and Lemma
4.5withj=q—-1. =

Now we consider the representations of M N induced from characters of
N. In this case the rate of decay of smooth matrix entries is determined by
the dimension of the unit sphere in N/Z. (As a special case one obtains the
well-known decay of the Bessel functions J,.)

THEOREM 4.6. Assume that p = dimv > 1. Let 0 # hev. Ifr >
p—1+ -;—d_im M then there is a constant C such that

(4.10) [$s.4(expY)| < C(1+ Y )~*=D2 . lg]l
forallY € v and f,g € H"(7h,+).
Proof. Recall from (3.16) that 1; 4 has the integral representation
(411)  drg(expY)= [ EBmVNf(m), g(m)) drm.
Ma\M

By Lemma 2.1, f and g arein C?P~Y(M, £,), with norms in C?~! bounded
by the H"(7,r) norm. By Kostant’s Double Transivity Theorem (cf. [Wal73,
§8.11.3]) the orbit M - h is the (p — 1)-sphere of radius |h| in v. The integral
(4.11) is thus the Euclidean Fourier transform of a C?~1 density on a (p—1)-
dimensional sphere. Estimate (4.10) follows from [Hor83, Theorems ‘7.7.6
and 7.7.14] (cf. [Ste87] for further references). m

8. Operator Fourier transforms. Let 7 be an infinite-dimensional
irreducible unitary representation of MN. If f € L}(N) then the integral

[ f(z)n(z)da
N
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converges absolutely and defines a bounded operator 7(f). We now use the
asymptotics of the smooth matrix entries for # to show that if f is locally
integrable on N and has some decay at infinity, this integral still converges
absolutely in a suitable weak operator topology. This gives a “generalized
Fourier transform” = ( f) which maps H"(7) continuously to H~" (=) for some
r>0.

THEOREM 5.1. Let f € L} .(N), and assume that f satisfies a bound
(5.1) [f(2)] < C(1+ N(2))~*e

for x outside some bounded set, where a < p+ q—1. Let ¥ = m) ,, with
0#h €z, and let £, € H(n). Then the integral

(52) [ (x(2), ) f(2) da
N

is absolutely convergent. Denote its value by (x(f),n). Then x(f) extends
to a continuous linear operator from H"(w) to H~"(x), wherer = |p+ 3¢+
3dim M |. It satisfies the intertwining properties

(5.3) ©(L(n")R(n)f) = x(n")x(f)m(n7"),
(5-4) T(f™) = m(m~)x(f)m(m),
form € M,n,n' € N, where f™(z) = f(m~'zm). Furthermore, the adjoint
operator ©(f)* = n(f*), where f*(n) = f(n-1).

Proof. Since f is locally integrable, we may write f = f; + fo, where
f € LY(N) and f;, satisfies (5.1) for all z € N. The theorem is true for f,
so it suffices to consider the case f = f,.

Write ¥(Y, Z) = (r(exp(Y + 2)){,n), where Y € v, Z € z. If we take

r = |p+3q+ 1 dim M| in Theorem 4.1, then the exponent s > p in equation
(4.1). Thus we obtain the estimate

[¥(Y, 2)l < C'(1+ Y I)~P (1 + 121)~ D2 g]l finll

where the constant C’ only depends on h,7. Since we are assuming that
(5.1) holds for all z, we can thus bound (5.2) by CC’||¢||||n||- times the
integral

[ [+ Y21 +12)~ D214 |Y|2 +|2))~@-*2dzdY .

v t J
So it suffices to show that this integral converges. Replacing |Z| by (1 +

[Y|?)~!]|Z| in the middle factor in the integrand and combining terms, we
can majorize the integral by

J [ Q1Y) @rreali1 4 (14 |y )7 2])~G+oe-eD2 dz dy

v 3



WHITTAKER TRANSFORMS 113

After the change of variable Z — (1 + |Y|?)Z this integral becomes
(5.5) J [+l 4| z))~-cdzdy

v ]
where b=p—-aandc=(p+q-1-a)/2. fa<p+qg—1thend>0
and ¢ > 0, and hence (5.5) converges. The intertwining properties follow
immediately from the definition of 7(f). m

Now we consider the case of representations induced from characters
of N.

THEOREM 5.2. Let f € L] .(N), and assume that f satisfies (5.1) for =
outside some bounded set, where a < (p—1)/2. Letw = mp . with0# h € v,
and let £,7 € H>®(r). Then the integral (5.2) is absolutely convergent.
Denote its value by (x(f)€,n). Then n(f) eztends to a continuous linear
operator from H"(x) to H™"(x), where r = |p + 1 dim M]. It:satisfies the
intertwining properties (5.3), (5.4) and n(f)* = n(f*). '

Proof. We apply the same argument, mutatis mutandis, as in Theorem
5.1, using the decay estimate from Theorem 4.6. This leads to the majorizing
integral (5.5) withb=p—1—-2aand c=(p—a)/2. Ifa < (p—1)/2 then
b> 0 and ¢ > 0, and hence (5.5) converges. m

EXAMPLE 5.1 (Biradial functions). Following Kordnyi [Kor82], we call
a function f on N biradial if f™ = f for all m € M. Assume f is biradial
and satisfies (5.1) for values of a as in Theorems 5.1 or 5.2. By (5.4) the
operator 7(f) commutes with 7|ps, and hence it can be studied in terms of
its action in the finite-dimensional M-isotypic subspaces.

Suppose ® = 7 ,. From (3.13) we calculate that x(f) is multiplication
by the operator I, ® n(f) if h € z, where I, is the identity operator on £,.
If h € v then x(f) = f(h)I is a scalar multiple of the identity. Here f is
the Euclidean Fourier transform of f defined relative to the invariant form
on n.

EXAMPLE 5.2. Suppose that 7 is a spherical representation and ¢, €
H(w) is a normalized M-fixed vector (cf. Example 3.1). Let f be biradial
as in Example 5.1. Then

(5.6) T(f)ex = (f, Yn)lx

where

(5.7) (fir) = [ f(n)a(n)dn
N

(#x(n) is the spherical function associated with x). The absolute conver-
gence of (5.7) follows from the general decay estimates of the previous sec-
tion. This also evident from the explicit formulas for 1, (cf. Example 3.2
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and [Far82]) and the asymptotic behavior of Bessel functions. The map
f— (f,¥x) is the M-spherical transform of f.

If 7 = m,; with h € z, then we can also calculate the M-spherical
transform of f as a partial trace of the operator 7,(f). Indeed, from (3.17)
and the M-invariance of f, (5.7) can be written as

(5.8) (f,¥x) = d5" tx(Ej(R)ma(f)) -

For example, let f(n) = M(n)*~9 and 7 = 7, ;, with h € z. Then from
(5.8) and [Cow82, Theorem 8.1] we have

(5°9) (f» 'l’r) = 21-p/27r(p+Q+1)/2|h|—Alzbh,j(’\) ’

where
 I((p+45+2-N)/4) r(2/2)
" T T((p+45+2+N)/4) T((Q - N/ ((p+2 - N)/4)”

(Note that Cowling’s “kth block” corresponds to the subspace P,’;(v) with
j=k-1.)

6. Homogeneous kernels. We now apply the results of the previous
section to define the operator Fourier transform of certain non-integrable
homogeneous densities on N. For ease of notation we identify A with the
multiplicative group (0,00) under a; — t, and write d*t = t~! dt for the
invariant measure. We identify a? with C by ¢f — ¢. Then a} = t* and
2p — Q. We say that a function g on N \ {1} is homogeneous of weight
p if g(ésn) = thg(n) for n # 1. We shall be particularly interested in the
following class of homogeneous functions.

LEMMA 6.1. Let f € S(N). Define
(6.1) Am)= [ fla-n)a=****da.
A

Forn € N\ {1} and R(\) < Q the integral is absolutely convergent. It
defines a jointly C*° function of n, A which is holomorphic in A and homo-
geneous of weight A — Q inn. If0 < R(A) < @ then f\ € L .(N).

Proof. LetY € v, Z € z. Then

flexp(Y +2)) = [ t7242 fexp(tY +122))d"t,
0

1
loc

where d*t = t~1dt. Since f(exp(Y + Z)) is a Schwartz-class function of
(Y, Z), the statements in the lemma follow by standard Mellin transform
techniques. =
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EXAMPLE 6.1. Suppose P is a homogeneous polynomial of weight 1 > 0
on n. View P as a function on N via the exponential map, and set

f(n) = P(n)e'”(")‘ .
Then f € S(N) and
(6.2) fr(n) = 41 ((Q + p — N)/4)P(n)N(n)~+~9
for n # 1.

Let m be an irreducible unitary representation of M N. We would like
to define the (operator-valued) Fourier transform 7 (f)) as a meromorphic
function of A € a;. We identify f) with the measure fy(n)dn on M N and
start with a range of A values where this measure is locally finite. The
decay of the matrix entries of 7 then compensates for the singularity of the
measure at infinity.

THEOREM 6.2. Let f € S(N). Suppose # = mp,,, with h € z (resp.
h € v), is an infinite-dimensional irreducible unitary representation of M N .
Let §,m € H*°(7w). Then the integral

(6.3) f f ((n)é, n) f(a- n)a">*+? dadn

is absolutely convergent in the strip 0 < R(A\) < p+ g —1 (resp. 0 <
R()A) < (p—1)/2), and is a holomorphic function of . Denote its value by
(r(fr)€,n) for X in this strip. Then =(f)) eztends to a continuous linear
operator from H"(x) to H~"(x), where r = |p + 3¢ + 1 dim M] (resp. r =
lp + 1 dim M])).

Proof. Write ¥(n) = (r(n)&,n) and
Fy(n) = f |f(a-n)la=°t?* da,
A

where ¢ = R(A). Then F, is homogeneous of weight 0 — @ and smooth
away from 1. Hence F,(n) < M,(f)N(n)~9*+°, where

(6.4) M,(f) = sup F,(n).

(n)=1

If we replace the integrand in (6.3) by its absolute value, then we get the
integral

(6.5) [ Fo(n)l$(n)| dn.
N

By Theorems 5.1 and 5.2 this integral is absolutely convergent, under the
stated conditions on o. Hence (6.3) is absolutely convergent by the Fubini-
Tonelli theorem and the operator 7( f)) has the stated continuity properties.
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The holomorphic dependence of the integral on ) follows from Morera’s the-
orem, using the absolute convergence (cf. [Kat66, Ch. VII, §1.1] for general
properties of holomorphic operator-valued functions). =

Remarks. 1. The function f) is locally integrable for A in the strips
occurring in Theorem 6.2. Since n — (x(n)¢,n)fA(n) is in L}(N) for all
§,m € H"(x), where r = p (resp. r = 2p), it follows by the dominated
convergence theorem that

m(fa) = lim N(ﬂ)f( R fr(n)dn

in the weak operator topology on Hom(H"(7), H~"()). In particular, 7(f,)
is a well-defined operator-valued function of f) for each A in the indicated
range.

2. Let My be defined by (6.4). The proof of Theorem 6.2 furnishes the
bounds

(6-6) Ix(f3)lr,—r £ CoMo(f)

for the operator norm, with the constant C, uniformly bounded in compact
subsets of the interval (0, p+g—1) (resp. (0, (p—1)/2)). Here ||A||,,—, denotes
the operator norm on Hom(H"(r), H~"(r)) and r = |p+3¢+1 dim M] (resp.
r = |p+ 1 dim M|). Theorem 6.2 holds for any measurable function f on
N for which M; < oo.

The estimates (6.6) just obtained for the operators m(f)) only require
that f be bounded and have a certain polynomial rate of decay at infinity.
Now we use the smoothness of f to show that x(f)) is actually bounded on
H(r) for R(A) > 0, and can be meromorphically continued in the parameter
A as an operator on H>® ().

THEOREM 6.3. Let © be an infinite-dimensional irreducible unitary rep-
resentation of MN, and let f € S(N). The regularized operator

() = (V) x(f),

initially defined for R(A) > 0, eztends to a continuous operator from H*®(r)
to H*®(x) for all A € C with the following properties:

1. For R(A) > 0 it is bounded on H*(x) for all s > 0.
2. For R(A) > —k and s > 0 it is a bounded operator from H*+*(x) to
H*(7) and is a holomorphic function of A in the strong operator topology.

3. 7(fr)la=o0 = (Jy f(n) dn)L.
The key ingredient in the proof of Theorem 6.3 is the following.
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LEMMA 6.4. Fiz orthonormal bases {Y; | i = 1,...,p} for v and
{Z;|j=1,...,q} for z and define the partial Laplacians

1 4
(6.7) A=) Y, A=) 7

i=1 J=1

in U(n). Suppose * = x .. Then n(A;) = —|h|*I, wherei =1 ifh € v
andi =2 ifh € z.

Proof. Since M acts orthogonally on v and z, the elements A; and A,
are M-invariant. They are A-homogeneous of weights 23 and 43, respec-
tively.

Consider first the case 0 # h € z. In the representation m, of N the
operator A; acts by the M-invariant scalar —|h|2. From the description of
Th,r|n in Section 3 we see that 7, .(A;) = —|h|? also. When 0 # h € v,
then 7 ,(A2) = 0 but 7, (A1) = —|h|%. =

Proof of Theorem 6.3 (cf. [Sch71, Prop. 3.3]). For t > 0 define
(6.8) Ty(t,x) = [ f(n)r(a;-n)dn.
N

Since f € S(N) and N is cocompact in M N, it is clear that Ty(¢,7) :
H(7w) — H*®(x) continuously. Let A be in the strip in Theorem 6.2. Since
the integral (6.3) is absolutely convergent in this range, we may invert the
order of integration relative to A and N. After making the changes of
variable n — a;! - n followed by t +— t~!, we obtain 7(f)) as a Mellin
transform:

(6.9) t(fr) = j?t’\T,(t,w) d*t,
0

where the integral converges absolutely in the B(H"(7), H~"(r)) norm, with
r as in Theorem 6.2. We now prove that the integral representation (6.9)
of #(f) has much better convergence properties than the original defining
integral.

The convergence and analytic continuation in A of the integral (6.9)
depends on the behavior of Ty(t,7) as t — 0 and ¢t — co. We consider first
the case of large t. We view functions on N as right M-invariant functions on
M N, and we denote the left regular representation of M N and of U(m +n)
by L. We will be considering L on various function spaces that will be clear
from the context.

Let X € n. Then an easy calculation shows that
W(X)Tf(t, W) = TL(G:I'X)f(t, 1!') .
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Hence this equation holds for all X € U(n). Let # = 7, ;. Set ¢ = |h|~2 and
D = A;,wherei =1ifh € vand it = 2if h € z. Then D is A-homogeneous,
and by Lemma 6.4 we have

(6'10) Tf(t’ W) = —Ct-uTL(D)I(ty 1I') ’

where u = 2 (resp. 48) if h € v (resp. h € z). Iterating (6.10) and using
the unitarity of r we get the operator-norm estimate

(6.11) ITs(2, m)|| < "t™"#|| L(D™) f]| s
for every positive integer n. It follows that the integral
o0

By(\,m)= [ 'Ty(t,7)d*
1

converges absolutely in the operator norm on H(x) for all A € C. Clearly
By(),7) is a holomorphic function of A which satisfies the bound
c" n
—— IO
if R(A) = 0 < nu. When X € m then

W(X)Tf(t, T)= TL(x)f(t, T)+ Tf(t, m)r(X).

Combining this with the action of D, we conclude that for all positive inte-
gers n, s, there is a constant C,, , so that

ITs(t, 7)Ells < Cr,at ™ || fll1,mutslllls »

for all £ € H*(). Here the norm on f is from L}, ,, ,(MN), the np+s times
differentiable vectors for the left regular representation of M N on L}(MN).
It follows that Bs(A,7): H*(7) — H*(7) continuously for all A € C and all
s> 0.

Consider now the behavior of Ty(t,7)ast — 0. If { € H*(r)and Y € n,
then the function ¢t — w(exp(a; - Y))¢ is infinitely differentiable from R to
H. Its kth derivative is of the form

m(exp(a; - Y))m(Qx(2,Y))E,
where Qx(,Y) € Ux(n) is a polynomial in ¢ and Y. It follows by dominated
convergence that the function ¢ — Ty (¢, 7){ extends to an infinitely differ-

entiable fun%on from R to H. Denoting its kth ¢-derivative by T}k)(t,w)f ,
we have -3

(6.13)  T{O(t,m)E= [ fexpY)m(exp(ar-Y))m(Q(t,Y))EdY .

(6.12) | Bs (A, m)|| <

Let X e m+nandY € n. Then
7(X)r(expY )€ = m(expY)r(e~ 24 Y X)E.
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But (adY)3X = 0, so e~ Y X is a quadratic polynomial in Y. Hence for
any integer s > 0 we have the estimate

Ir(exp Y )¢l < Co(1 + Y )**Ii€]ls

where the constant C, does not depend on Y. Using this estimate in (6.13),
we obtain a bound

(6.14) T (8, 7)Ells < Crollélinss [ If(expY)I(1+ [Y])F+22 dY

when 0<t < 1.
From (6.14) it follows that when $R(A) > 0, the integral

1
Ci(\x)= [ Ty(t,x)d"
0

defines a bounded operator on H*(x) for all s > 0. To carry out the analytic
continuation, we integrate by parts as usual and obtain the operator identity

CRER T PP o — Yy
A ZAA+1)..(A+7)

(=1)* F k() .
TN 0FEsn LT G mdt

on H*®(x), where we have set x(9)(f) = T}j)(l,w). With a regularizing
gamma factor, this equation can be written as

k-1 k-1
(6:15)  T(A)'C;(0m)=T(A+K) Y (-1¥( T (A +0)s(s)
j=0 i=j+1
1
+ (=1)FT(A+ k) [ R, ) doe
0

From (6.14) and (6.15) we conclude that A — I'(A)~!C;(A,x) has an ana-
lytic continuation to a continuous operator on H*(7) which depends holo-
morphically on A. More precisely, if 8(A) > —k then for all s > 0

r)7'Cs(A 7)) : Mo (x) - H2()

is bounded, with operator norm bounded by

Cion [ If(expY)|(1 4+ [Y])F+22dY .

Since 7(f1) = By(A,7)+ Cy(A, ) on the strip 0 < R(A) < p — 1, this gives
the desired analytic continuation.
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Finally, from (6.15) with k¥ = 1 we have
f o
lim Ar(f3) = Ty(1,7) - of:r} )t,7)dt = Ty(0,7).

But lim;_,¢ 7(a; - n) = I, so by dominated convergence
Ty(0,7) = ( [ (n) dn)I.
N
This completes the proof. =

7. Whittaker transform. We now study the Fourier transform of
functions on the homogeneous space N \G relative to the group AX N (direct
product). Recall that since A normalizes N, it acts by left translations on
N\G. For € C(N\G) and ) € a; set

(7.1) $x(9)= [ d(ag)a=>"*da.
A

Then ¢ € C®(N \ G) and ¢»(ag) = a*+*¢,(g) for a € A.

THEOREM 7.1. Suppose ®* = m, ., with h € z (resp. h € v), is an infinite-

dimensional irreducible unitary representation of MN. Let £, € Hoo(T).
Then for every ¢ € C°(N \ G) the integral

(7.2) J éx(m*n)(x(n)€, n) dn
N

converges absolutely in the half-plane R(A\) > —(p+ q— 1)/2 (resp. R(A) >
—(p — 1)/4), and is a holomorphic function of A. Denote its value by
(Wx(#2)E,n) for X in this half-plane. Then Wp($») eztends to a contin-
uous linear operator from H"(x) to H="(r), where r = [p+ 3¢ + 1 dim M|
(resp. r = |p+ 3 dim M]).

Remark. When RR(A) > 0 then (7.2) is absolutely convergent for all
€,m € H(r), and Wr(¢,) is a bounded operator on H(r). An essential
point of the theorem is that the integral (7.2) remains absolutely convergent
for A in an open half-plane containing the imaginary axis, provided £, n are
sufficiently smooth vectors.

Proof. If n = n(Y, Z), then by (3.5), ¢r(m*n) = t*+*¢,(k) for some
k € K, where

£ = (14 Y + 121 2 (1 + N(n))*.
Hence if 0 = R(A) > —p then
(7.3) [62(nm*)] < 4777 {sup |6 (k)| }(1 + N(n))=97%,



WHITTAKER TRANSFORMS 121

The theorem now follows immediately from (7.3) and Theorems 5.1 and 5.2.
|}

We shall call Wy(¢,) the Whittaker transform of ¢. The Whittaker
transform obviously intertwines the right action of N on C®(N\G) with
right multiplication by x(n)~1:

(7.4) Wr(R(n)$x) = Wr(d2)r(n)~".
Since 7 is also a representation of M, the Whittaker transforms of left and
right translates of ¢ by elements of M are related by

(7.5) We(R(m)pr)n(m) = x(m)Wx(L(m')¢s),

where m’ = m*m~!m*~1. This follows by the change of variable n —
mnm~! in the defining integral, together with the property L(m)¢) =
(L(m)¢)» for m € M.

EXAMPLE 7.1. Suppose ¢ € CX(MN \ G), i.e. ¢ is invariant under left
translations by both N and M. Then by (7.5)

Wa(R(m)x) = 7(m)Wa(gr)r(m™7).
Thus the Whittaker transform intertwines right translation by m € M on
MN \ G with conjugation by the operator 7(m). In particular, if ¢ is also
right M-invariant, then W,(¢)) commutes with 7(m), m € M, and hence
preserves the M-isotypic components of .

Let © be a spherical representation of M N with M-fixed vector £, and
spherical function 5. The distribution w,(A) on M N \ G defined by

(7.6) (¢, wr(A)) = (Wa(2)Er, &r)

is right M-invariant, and depends holomorphically on A. If ¢ is also right
M -invariant, then

(WR(R(n)d’/\){rafr) = (W‘R(¢a\)7r(n-l)£m£1r) = ww(n—l)(Ww(¢A)£‘m Ew) ’

since Wy (¢$x)*€x is proportional to £,. Distributions on M N \ G with these
trasformation properties under right M and N translations are called M-
spherical Whittaker vectors (cf. [Far82, §II.1]). When R(\) satisfies the
conditions in Theorem 7.1 we can represent w,()) by the integral

(#,0x(N)) = [ $a(m*n)ppa(n)dn
N

for € C(MN \ G).

Now we consider the analytic continuation of the Whittaker transform
in the parameter A and its continuity properties as an operator on the space
H>°(x). For the M-spherical Whittaker distributions in Example 7.1 this
was done by Faraut (loc. cit.), modifying techniques of Schiffmann. Our
method is similar.
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THEOREM 7.2. Let ¢ € C°(N \ G). For all s > 0, the operator-valued
function A — W, (@) extends to an entire analytic function from a; to
End(H?(x)).

Proof. We essentially follow [Sch71, Théoréme 3.1}, replacing the center
of U(n) by suitable M-invariants in U(n) and noting that Schiffmann’s esti-
mates also imply continuity of W, (¢,) on the spaces H*(7). The argument
goes as follows.

Set ¢%(g9) = #(a"'ga) and x%(n) = x(a~'na) for a € A. Assuming
R(A) > 0, we use the absolute convergence of the integrals to justify the
following calculation:

We(dr) = f f«;b(am"'n)a'*"”w(n)dnda
N A
=2 f f¢(a'2m"'n)a”‘+2”1r(n)dnda
N 4

=2 f f¢°(m"‘n)a2"1r“(n)dnda,
N A

where in the second line we made the change of variable a — a~? and in
the third line n — a~!na.

Take 2 = supp(¢). Then by [Sch71, Lemma 3.3] there exists T < oo
and a compact set C C N so that a;'m*na; € N2 implies that ¢t < T and
n € C. Thus if we define

(7.7) Fy(a,7) = f #*(m*n)r%(n)dn,
N

then the integrand is zero outside C. Hence Fy(a, ) is a bounded operator

on H(x) with
(7.8) l1Fs(a, 7)|| < [|4]]comeas(C)

bounded uniformly in a. By Fubini’s theorem we can write the Whittaker
transform in terms of Fy as

T
(7.9) We(dr) =2 [ Fy(ar, m)t d*t.
0

(From the bound (7.8) we know a priori that this integral converges in the
strong operator topology on H(7) when $R(A) > 0.)

The convergence and analytic continuation of (7.9) for R(A) < 0 depends
on the behavior of Fy(a:,7) as t — 0. The invariance of the measure dn
yields the relation

Fo(a,r)r%(X) = [ (R(XT)¢*)(m*n)x*(n)dn
N
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for X € U(n). (Here X — XT is the canonical anti-automorphism on
U(n).) In particular, taking X = D* as in the proof of Theorem 6.3, we
obtain the identity

(7.10) Fy(a,7) = cka** f (R(D*)¢®)(m*n)x®(n)dn
N

for all positive integers k, where p is a positive multiple of 3. We now recall
the key estimate.

LEMMA 7.3 (Schiffmann). Let ¢ € C°(N \ G). Then for every compact
setI' CG,T €R, and u € U(g),

(7.11) sup |(R(u)9*)(g)| < o0.
g€rt<T

Proof. See [Sch71, Lemme 3.4]. »

Completion of proof of Theorem 7.2. Let u € U,(m + n)
be A-homogeneous of weight v > 0. By the nilpotence of ad(n) there are
elements u; € U,(m + n) homogeneous of weight » + j8, a positive integer
J, and polynomials p; on N so that

J
Ad(n~Vyu = 3 pj(n)u; .

Jj=0
Hence
J .
©(u)x%(n) = a*7%(n)r*(Ad(n~")u) = 7°(n) Za'-"’pj(n)w(uj).
i=0
It follows from (7.10) that
(7.12) w(u)Fy(a,n)

J
= ot Zoa'w-ﬂ’( J B (RO (o dn)r(u;).

Given u and a positive integer r, we take k so that ku > (r + J)B.
Recalling that the function n — (L(D*)¢*)(nm*) has compact support
uniformly in a, we obtain from (7.11) and (7.12) the estimate

(7.13) sup |7 (u)Fy(ae, )E|| < Ct7|I€]ls
t<T

for £ € H*°(7), where C is a constant depending on k,u and ¢. The proof of
the theorem now follows from (7.9) and (7.13) by the same Mellin transform
techniques as in Theorem 6.3. =

8. Functional equations. Let ¢ € C°(N\G). For A€ alandn € N,
set $r(n) = gr(m™n).
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THEOREM 8.1. Let f € S(N) and R(\) > 0. Then the integral
(8.1) furxdr(@)= [ fu®)dr(v'9)dy
N

converges absolutely when 0 < R(p) < Q and g € G.

Suppose 7 = Th,ry, With h € z (resp. h € v), is an infinite-dimensional
irreducible unitary representation of MN. Let £,7 € H*™(x). Then the
integral

(8.2) [ (x(2)€,n)fu * Pa(z) dz
N

is absolutely convergent in the strip 0 < R(p) < p+g—1 (resp. 0 < R(p) <
(p — 1)/2). Denote its value by (w(f, * $2)€,n) for p in this strip. Then

(f, * #>) eztends to a continuous linear operator from H™(x) to H="(r),
where r = |p+ 3g + } dim M] (resp. r = |p + 1 dim M]).

COROLLARY 8.2. If R(A) > 0 then
(8.3) T(fu)Wa($2) = 7(fu * 63)

as operators from H"(x) to H~"(x), for p,r in the indicated range.

Before proving the theorem we consider the convolution of two particular
functions of the homogeneous norm. Define

(8:4) &(z)= [ Ny) 9 (1+ Ny '2)) 9 bdy.
N

LEMMA 83. If 0 < a < @ and b > 0, then there is a constant C =
C(a,b) so that

&(z) < C(1+ N(z))~9*e
forallz € N.

Proof. We estimate & first on the set {M(z) < 1}. By the triangle
inequality (3.4), |IN(z)—N(y)| £ M(y~'z). Hence if N(z) < 1 and N (y) >
2 then 1 + N(y~'z) > N(y). So splitting the integral for & over the sets
{N(y) < 2} and {N(y) > 2}, we obtain the bound

$(z)< [ N@dy+ [ N)tdy.
"N(y)<2 N(y)>2

Each of these integrals is finite, hence & is bounded on {N(z) < 1}.
Now assume N (z) > 1. On the set

D={yeN|N@y'z)< IN(2)}
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one has N(y) > %N (z) by the triangle inequality. It follows that
S N 2) 9+ (1 + M) 9 dy
D

< 29414 N(2))=9~* [ N(zy™)~9+2dy
D

<C(1+N(2)) 9N ()%,

where the last inequality follows from the integral formulas for powers of the
function N/ [KS71]. The integral over the complement of D can be majorized
by

297°N(2)™%** [ (1+N(9))™ 9" dy
N

if 0 < a < @, with the last integral finite since b > 0. Combining these two
estimates, we obtain a bound

#(z) < C max{(1+ N(2))"?~"N(2)*, N(z)~9**}
when N (z) > 1, which is equivalent to the bound in the lemma. =

Proof of Theorem 8.1. Take g = z¢g’ with z € N in (8.1). By (6.4)
and (7.3) we can bound the integrand by

CN(zy™ 1)~ (1+ N(y))~9%%,

where ¢ = R(A), 7 = R(u), and C does not depend on z. Now apply
Lemma 8.3 and Theorems 5.1 and 5.2 to see that (8.1) converges absolutely

and that the operator =(f, * #>) exists as stated. m

Proof of Corollary 8.2. Let £, € H™(x). Then W,(4,)¢ €
H>°(7) by Theorem 7.1 and x(f,)Wx(¢r)§ € H~"(x) by Theorem 6.2. Fur-
thermore, we have the absolutely convergent integral representations

(T(fu)Wa(d2)E,m) = f Fu@){(x(y)Wr(d2)E, 1) dy
N
= [ [ £ x(yz)é,n) dydz.
N N

But by Fubini’s theorem and Theorem 8.1 this double integral is
(W(f# * 51\)&1 7’)

for A, in the indicated range. =

We illustrate the results of this paper in the context of the spherical
principal series representations of G, previously treated by Faraut (loc. cit.).
Recall that the (unnormalized) Kunze-Stein intertwining operator Ay acts
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on ¢ € C¥(MN \ G) by the integral
(8.5) Ax()(9) = [ ¢x(m*ng)dn
N

when R(A) > 0. One has

Ax(¢2)(mang) = a= P A5 (6 )(9),

for m € M, a € A, n € N, so that A, intertwines the spherical principal
series representations of G with parameters A and —A\.

By the Bruhat factorization and a change of variable, (8.5) can be ex-
pressed as

(8.6) Ax(dr)(m*g) = f N(n)*~9¢5(m*ng) dn
N

([KS71), [Sch71], cf. [Goo76, Ch. IV, Sec. 1.3]). Throughout the following let
f(n) — e-Af(ﬂ)4 — e_l}’l‘_lzl2

if n = exp(2Y + Z). Then f € S(N) and fia(n) = 4T'((Q — A)/HN(n)*—9
(cf. Example 6.1). Hence

Ax(#2)(m*g) = 471 T((Q — 2X)/4) ™" fax + 62(9)
when R()) is small and positive, as in Theorem 8.1.
Take the function ¢ € CP(MN \ G) so that ¢y = Py, the Poisson
kernel, characterized by the property Px(k) = 1 for all k € K. Since P, is
the unique K-fixed vector, one has

Ax(P>)(g) = c(A)P-x(9),
where ¢()) is a scalar (the Harish-Chandra c-function). We recall that ¢(A)
can be evaluating by setting ¢ = 1 and using the Iwasawa decomposition
(3.5):
cA)= [ [(A+IY]?)?+|2?)~C*D/ gy dz.

Calculating this integral in polar coordinates, one obtains the well-known
result [Hel70, Ch. III, Cor. 1.17]

87)  e(A)=c2™*T ('\)/ (F (2/\1 Q)F (EI'\ZP_H))

with a constant ¢o depending only on p, ¢g. In particular, ¢(\) is a meromor-
phic function.

Set 7(A) = 4¢(A)I((Q — 2))/4) and define the normalized intertwining
operator

(8.8) Ax(83) = 7(0) 71 f2a *
for R(A) > 0. Then Ay(Py) = P-).
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EXAMPLE 8.1 (Whittaker transform of Poisson kernel). Let 7w be an
infinite-dimensional irreducible representation of MN. From (8.8) and
Corollary 8.2 we have

(8.9) 1N (faa)m(By) = m(P-))
for R(A) > 0 and sufficiently small. Here each side of the equation is a
continuous operator from H>®(x) to H~=*(x) (cf. Theorems 6.2, 7.2), and

has a meromorphic continuation in the parameter A. Hence (8.9) holds for
all but a discrete set of A (cf. [Sch71, Théoréme 3.3]).

ExXAMPLE 8.2 (Spherical Whittaker transform). Consider a spherical
representation * of M N with M-fixed vector §{,. From Example 5.2 we
have '

(8.10) YA 7 (f2r)ér = Ya(A)r

where 9,()) is a meromorphic function of A\. Take ¢ € C(MN \ G/M).
Then by Example 7.1 and Corollary 8.2 we have

(8.11) YA 7' (for * 2 )en = Yr(A)T(62)En

for R(A) > 0 and sufficiently small. But each side of this equation has a
meromorphic continuation in the parameter A (cf. Theorem 7.2), and hence
(8.11) holds for all \. We may write this equation in terms of the M-spherical

Whittaker distribution w,(A) and the normalized intertwining operator .A)
as

(8.12) (A, wr(=A)) = 1r(A) (P2, wx(A)) .

When # = 7, ;, with b € 2z, one obtains an explicit formula for the
multiplier y,(A) using (5.9):
(8.13)  7x(X)
_ - Lpt 47 +2-20)/4) I((p+2 +21)/4) T((Q + 23)/4)
I'((p+45+2+20)/4) I((p+2-22)/4) T((Q — 2))/4)
(cf. [Far82, Prop. I1.4], where our variables A, |h|,j correspond to Faraut’s
s, A/4,n respectively).
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