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HOMEOTOPY GROUPS OF 3-MANIFOLDS -
AN ISOMORPHISM THEOREM

BY

MARY-ELIZABETH HAMSTROM (URBANA, ILLINOIS)

1. Introduction. In 1963, McCarty [11] (Theorem 4.21) proved that if M
is a compact manifold with boundary (dim M > 1) and F is a finite subset of
the interior of M, then the group of homeomorphisms (compact-open
topology) of M —F is topologically isomorphic to the group of homeomor-
phisms of M that leave F fixed. Sprows [15] showed that if M is a compact
closed 2-manifold, M is the 2-manifold obtained from M by removing the
interiors of a finite number of disjoint discs in M, and F is the set of centers
of these discs, then the homeotopy group of M (see Section 2) is isomorphic
to that of M —F. Tondra [16] extended Sprows’ result to the non-compact
case, i.e., M is connected, separable, metrizable and without boundary. The
purpose of this note is to extend these results to manifolds of dimension
three and to replace discs by handlebodies and the centers of discs by
standard cores of the handlebodies.

2. Definitions and notation. Let M denote a connected, separable, metri-
zable 3-manifold with (or without) boundary. Let V;, V,, ..., V, be disjoint
orientable handlebodies in M°, the interior of M, i.e, V; is homeomorphic to
a regular neighborhood in E? of a point or of the union of (more than one)
polygonal arcs ax; b, ax,b, ..., ax,b, where no two of the arcs intersect
except at a and b. In fact, suppose that V, is a regular neighborhood in M of
the graph C; = (Jax;b or the point C;. Denote () C; by F, and the manifold
M—{JVe° by M. The set C; is the core of V.

Let G(M) denote the group of all homeomorphisms of M onto itself
topologized by the compact-open topology, and let H(M) denote G(M)
modulo its identity component. The group H (M) is the homeotopy group of
M. Note that G(M) is locally path connected (see [2] and [4]) so that the
identity component consists of those homeomorphisms that are isotopic to
the identity, denoted by id,,. If N is a compact subset of M, let G(M; N)



200 M.-E. HAMSTROM

denote the group of homeomorphisms of M that leave N pointwise fixed and
let G (M rel N) denote the group of homeomorphisms of M that take N onto
N. Then H(M; N) and H(M rel N) denote G(M; N) and G (M rel N) modulo

their identity components.

If o: M xI — M is an isotopy, denote by ¢, the homeomorphism of M
that takes each point x to ¢(x, 7). I shall frequently refer to the isotopy ¢ as
to the “isotopy {¢,}”.

In the present context, not all homeomorphisms of M extend to M nor
do all those that do extend to M extend to homeomorphisms taking F to F;
so let H(M) denote the group of homeomorphisms of M that extend to
homeomorphisms of M that take F to F modulo those isotopic to the
identity (as homeomorphisms of M to M). The main theorem is

TueoreM 1. The group H(Mrel F) is isomorphic to H(M).

Work of Moise, Bing, Craggs [3] and the author [7] show that
homeomorphisms and isotopies of compact 3-manifolds may be approxima-
ted via small isotopies by piecewise linear ones. Thus the topological and the
piecewise linear theories are identical in the present context. (See [7] for
further explanation.) Thus, although I essentially work in the topological
category here, I use piecewise linear notions such as regular neighborhood
without specifically moving into the piecewise linear category.

3. Lemmas for Theorem 1.

LEMMA 1. If S is an orientable, closed compact 2-manifold, then G (S x1;
S x {1}) is path connected.

Proof. Case 1. S is a 2-sphere.

Let N denote the north pole of S and suppose he G(S xI; S x1}). It is
standard (see, for instance, [13], p. 257) that h is isotopic under an isotopy
that leaves S x {1} pointwise fixed to a homeomorphism that leaves N xI
pointwise fixed. Call this new homeomorphism h also. Let D and E < D°
denote discs in S centered at N such that E xI is a subset of the interior of
h(D xI). Note that E xI and (S xI)—(D xI)° are 3-balls and to these the
Alexander trick [1] may be applied. There is a homeomorphism h of S xI
onto itself that is the identity on (S x {1}) U(E xI) and is h outside D x I. The
Alexander trick applied first to (S x {0})— E° and then to the complement of
E° x1I yields an isotopy {H.} on S x I such that, for each 7, H, is the identity
on (S x{1}) U(E xI), H, = h, and H, = id.

Now h~!h is the identity outside D xI and on S x {1}, so the Alexander
trick applied to D x I yields an isotopy {G,} on S x I such that, for each 7, G,
is the identity outside D xI and on S x{1}, G, =h™'h and G, =id. Then
\H.G,} is an isotopy from h to id and S x {1} remains pointwise fixed
throughout the isotopy. (This is the Roberts trick [12]; see also [6], p. 213)

Case 2. S is not a 2-sphere.
Waldhausen proved ([17], Lemma 3.5) that every homeomorphism of
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S xI that leaves S x{0} pointwise fixed is isotopic to a level preserving
homeomorphism, the isotopy being constant on S x |0, 1}. Suppose then that
h is level preserving and leaves S x {0} pointwise fixed. (This switch from top
to bottom makes the notation simpler.) Then H,(x, s) = h((x, t5), s) yields an
isotopy from h to the identity that is constant on S x |0].

CoroLLARY. If S is neither a 2-sphere nor a torus, then if h leaves
S x{0, 1} pointwise fixed, then the isotopy can be chosen to be constant on
S x {0, 1}. '

Proof. The proof rests on the fact that for such S the fundamental
group of G(S) is trivial [5]. If h is a level preserving homeomorphism of S x I
that moves no point of S x |0, 1}, then there is a loop a: I — G(S) such that
a(t)(x) = y, where h(x, 1) =(y, t). Since the fundamental group of G(S) is
trivial, there is a map F: I xI — G(S) such that, for each t, F(z, 1)
= a(1), F(r, 0) = idg and, for each s, F(0, s) = F(1, s) =idg. Then H,: S xI
— S xI defined by H,(x, t) = (F(z, s)(x), t) is the required isotopy from h to
the identity.

In the following, V is an orientable handlebody with boundary S, and

k
F={axb (k=2
i=1
is the core of V (as defined in Section 2).
LeEMMA 2. The space of homeomorphisms of V that leave S pointwise fixed
and take F to itself is path connected.

Proof. Let D,, ..., D, be disjoint properly embedded discs in V such
that, for each i, D, "F = x; and let B,, ..., B, be regular neighborhoods of
D,, ..., D, in Vsuch that, for each i, B, " F is an arc in the interior of ax;b
and B;~S is an annulus A4;. Then bd B;— A; is a union of two properly
embedded discs D; and D; such that D;~F is a point x; and D" F is a
point x;" and cl(V—{JB,) is a union of two balls K, and K,, K;~F being
like the union of k straight-line intervals from the origin of the standard ball

to its boundary.
Let h be a homeomorphism of V that leaves S pointwise fixed and takes

F to F. Since, for homotopy reasons, h cannot permute the arcs ax; b if k
> 3, there is an isotopy on F from h|F to idg. If k = 2, then F is a circle
and the existence of this isotopy is evident. It follows from the isotopy
extension theorems of Hudson [9] and the fact that topological homeomor-
phisms and isotopies may be approxxmated by piecewise linear ones (see [3]
and [7]) that this isotopy extends to an isotopy from h to a homeomorphism
that leaves F pointwise fixed, thé isotopy being constant on S. Assume then
that h leaves F pointwise fixed. Another small isotopy puts h(D;) in “general
position” with respect to (J(D;uD/) so that each component of
h(D)nJ(D;iu D) is a simple closed curve on which h(D;) crosses

U(D; v Dy).
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Each such simple closed curve bounds a disc in h(Dj. If D is an
innermost such disc, then D —bd D misses (J(D; u D;’) and either contains x;
or misses F entirely. If D misses F, then, by standard arguments, D may be
moved by an ambient isotopy across a ball and off (J(D; U D;’) to reduce the
number of components of h(D; n|J(D;u D;). Suppose then that all inner-
most discs that miss F have been removed. Then each component of h(D))
—U(D;j u D}’) that misses F is an annulus that links F.

If such an annulus is in some B; or K, and has its boundary curves in
the same one of D; or D}, say D;, then it bounds together with an annulus in
D; a solid torus [14], so can be moved by an ambient isotopy across the
solid torus and off D;. If S is not a torus, any such annulus in K, has, for
homotopy reasons, its boundary curves in the same one of D; and D;'.
Suppose all these annuli have been removed. Then h(D;) lies in B; and
standard arguments show that h(D;) can be moved by an ambient isotopy to
D;. All these isotopies are constant on X;.

If S is a torus, then at this stage the components of h(D;)—J(D; v D;')
are “concentric” annuli with boundary curves in different D; and D; and a
disc E; containing x; with boundary in D; or Dj, say D;. Then E; may be
pushed off Dj (if x; is moved along the simple closed curve F) by an ambient
isotopy and this pushing may be repeated until h(D;) lies in B; and then 1s
D;. Do all this for each D;.

At this stage, h is a homeomorphism that leaves S U F pointwise fixed
and takes each D; to D; and this has been achieved by an isotopy constant
on S and on F if S is not a torus. The Alexander trick may now be applied,
first to the D; and then to the components of V—{ ) D;, to obtain the required
isotopy of h to the identity.

CoROLLARY. If S is not a torus, then G(V; SUF) is path connected.

Proof. This follows from the above argument.

LEMMA 3. If frand g are elements of G(Vrel F) and represent the same
element of H(S), then f and g represent the same element of H(Vrel F).

Proof. There is an isotopy on S from f|S to g|S and, by the isotopy
extension theorem (see [9] and [7]), this isotopy extends to an isotopy from f
to a homeomorphism f’ of Vsuch that f'|S = g|S, the isotopy keeping F in
F. Lemma 3 now follows from Lemma 2.

4. Proof of Theorem 1. If y is a homeomorphism of M that takes F to F
or of M that extends to such a homeomorphism, let [y] denote the isotopy
class of y in H(M rel F) or in H(M). Suppose that [y]e H(M). Then 7y extends
to a homeomorphism 7 in G(Mrel F). Let ¢[y] = [7].

(1) @ is well defined.

This follows from Lemma 3.

(i) ¢ is surjective.
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Suppose [x]e H(Mrel F). For each i, a(V}) is a regular neighborhood of
x(C,) = Cj,. as 1s VJ’:’ so by regular neighborhood theory [10] there is an
ambient isotopy {G,} taking «(J¥;) to UV, {G,} being constant on F. Then
{G,a} is an isotopy taking a to G,a, so ¢@[G,a|M] = [«].

(iii) ¢ is injective.

Suppose that [y]e H(M), that § is an extension of y to an element of
G (Mrel F), and that 7 is isotopic to the identity under an isotopy G = |G,}
that leaves F in F. Then y(V) =V, for each i. Let V/ be a regular
neighborhood of C; that misses all G,(S;) and let V;” be a regular neighbor-
hood of V.. Denote the boundaries of V; and ¥’ by S; and S;’, respectively.
The isotopy G|(M—JV)) xI extends to an isotopy

G:clM-UV)xI-M
such that G'(S)) = S; for each t and i and
Go = Golcl(M=UV) xI.

Then G’ extends to an isotopy G”’: M xI — M such that G5 = G, and, for
each 7, G/(F) = F. (This follows from the isotopy extension theorem and
Lemma 3.

By Lemma 1, G(cl(¥;—V;"); S;) is path connected. Therefore, it may be
assumed first that G} is the identity and then (Lemma 2) that GY is the
identity. Now for each t the product structure on G”(cl(V,—V/)) and
G"(cl(V/"-V;)) induced via G” by that on cl(V,— V") and cl(V;"— V) may be
used to an ambient isotopy G,(S;) down to S; and then back up to S;, the
isotopy constant outside |JV;”. This yields an isotopy H: M xI — M such
that, for each t,

H.|(M-V")=G|M=-V"), H/(V)=V,
Hr(C") = C,’, HO = Go, and Hl = ldM
(GY =id, so H, =id by construction). The H | M x 1 is an isotopy of y to the
identity.
(iv) @ is a homomorphism.
Clearly, if [y], [y]Je H(M), and 7 and § represent ¢[y] and ¢@[y],
respectively, then 707 =yo0y on each §;, so yoj extends yoy to a

homeomorphism of M that takes F to F. Thus joy e@[yoy7], so ¢[yoy’]
= ¢@[y]oe[y]. This completes the proof of Theorem 1.
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