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1. Introduction. In this paper we consider the classification problem
of Z,-actions on manifold-bundle over the circle. We solve this problem
for actions which arc free except, possibly, at a finite number of points.
We assume also that the fibers are equal to §', 82, P, D' or D®. We extend
results of Tao [16], Ritter [14], and Tollefson [17] concerning the action
of Z, on 8' x 8%, results of Kim [4] on the involution of N, and results
of Kim [5] on actions of Z, on 8' x D>

We work in the PL-category. All manifolds are assumed to be con-
nected, unless otherwise specified. We adopt the terminology of [3].
Let N denote a nonorientable $*-bundle over §', B a Klein bottle, Bs
a solid Klein bottle, and Mb a Mo6bius band.

1.1. Definition. Let M, = 8'XF = R xF|~, (t,9)~ (t+1,9(y)),
be an F-bundle over 8!, where F is a manifold and ¢ is a self-homeo-
morphism of F. An action of Z, (generated by T) on M, is said to be stan-
dard if it may be described by one of the following expressions:

1. T(t, y) = (t+7/s, go(y)), where g, is a self-homeomorphism of F,
8 divides #, 0 <i<s, (¢,8) =1 (i.e.,, ¢ is relatively prime to s), g7
= g™ and g,¢ = @g,. We call such an action a standard action of type
(1; »,s,<,g, or, more exactly, (1; », s, 7, Jo)F,g)

2. T(t,y) = (1—1, go(y)), where n is even, g, generates a Z,-action
on F, and ¢g, = gop~'. We call such an action a standard action of type

(2; », g,) or, more exactly, (2; n, Jo)(F,0)-

1.2. Remark. An action of type (1; »,s,1,g,) on M, is free iff
g = ¢ g8 gencrates a frec action on Z,, on F (in particular, if ¢ = Id
and 8 = m). An action of type (2; n, go),, is free iff g, and g,p gen-
erate free actions of Z,, on F.

1.3. Definition. Two G-actions y,, u,: G XM — M are called weakly
conjugate if there exist a group automorphism 4: @ — G and a self-homeo-
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morphism f: M — M (f preserves orientation if M is orientable) such
that u; = f~'uy(A X f). If A is the identity, then u, and u, are conjugate.
Let Iz(M) denote the set of points with nontrivial isotropy group
{for a given G-action on M).
The following theorem contains the main result of our paper:

1.4. THEOREM. Actions of Z, om S'XF with dimIz(8'XF)<0
are standard for F = 8, 8%, P*, D', D? except for the cases of Z,-actions on
S x 8! with 3 fiwed points and Z,-actions on S' X 8' with 2 fived points.

2. Construction of standard actions. We have introduced in [11]
some methods of constructing Z,-actions. We will show that the standard
actions (Definition 1.1) can be obtained as simple examples of those
constructions.

2.1. Definition. Let s, r be a pair of natural numbers such that
{i) r < n and (ii) (r, ) = 1. Then we define n(r) as a natural number
which satisfies the following conditions:

n(r) < n, 3 aw(@)yr =1+kn.
0k<n
The function n(-) is a self-bijection of the set of numbers r satisfying
conditions (i) and (ii). k(n, r) is a well-defined function on pairs (n, r) which
satisfy (i) and (ii).
Now we use the terminology of [11].

2.2. LEMMA. (a) (1; n, 8, %, go)pey= ([0, 1] X F, Id X g)z(O}xF,{l}xF.f,q(i))y
where Idxg generates a Z,,-action on [0, 1]XF and g = ¢ 'g;,
f = ,P—k(a,i) gz(i).

Conversely, ([0,1]XF,Id X g)oixr 3 xF.1,r)» Where 1d X g generates a
Zy,-action on [0,1]X F, i3 equal to (1; m,s,s,s(r), go)(F.,), where g,
= fs(r) g—k(e.r) and ¢ = f°g".

(b) (2; ", Jolre = ([0, 1]X F, 91)#(17'1.17'2,1)([0; 11x F,g,), where F,
={0}xF (i =1,2), g,(¢,9) = (1—t: 9(¥), gat, y) = (l—t;fgo‘Pf_l(?/))1
and f is an arbitrary homeomorphism from F, to F,.

Conversely, ([0, 11X F, g;) H ) xmoxz0 ([0, LI X F, ;‘72)7 where g, and
g, generate Z,-actions on [0,1]x ¥, ¢,(t,y) = (l—t, Jo (y)) and gs(t, y)
= (1—1, g, (9)) for given self-homeomorphisms g, and g, of F, is equal to
(2; n, gc;)(F.q:n where ¢ = g(;f_lgt;’-lf'

Proof. The embedding {0} X F < M satisfies the assumptions of
Theorem 4.1 in [11]. This theorem reduces the proof of our lemma to a sim-
ple computation.

3. Actions on 8' X 8%, Let & denote a class of actions. Then &,(«)
(respectively, &,(2/)) denotes the number of actions in & up to conjuga-
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tion (respectively, up to weak conjugation). Let ¢(n) denote the cardinality
of the set of all natural numbers relatively prime to =, less than #, and
let [»] denote the integer part of =.

The following theorem extends the results contained in [4], [8],
[14], [16], and [17].

3.1. THEOREM. Each action of Z, on S' X 8* (generated by T) with
dimIz (8" X 8%) < 0 takes ome of the following forms (up to comjugation).
Each of the subcases 1.1(a), ..., II(c) describes exactly one class of weakly
conjugate actions.

I. Actions of Z, on M = 8" x §* (¢ = Id).

1. Actions which preserve orientation:

(a) Actions of type (1; n,n, i, Id) (t.e., T(t,y) = (t+1i/n,y)). Two
such actions, for i =i, 4", are conjugate iff i’ = i’ or n—1'; hence

te) =[P, o) 6, w7, - 8,

where, for brevity, the set of actions described in 1.1(a) is denoted by (a).

(b) Action of type (2; 2, A) (i.e.,, T(t,y) = (1—1t, A)), where A denotes
the antipodal map; 1z(M,) = @, and M* = P4 P>

2. Actions which reverse orientation:

(a) Actions of type (1; n,n, i, A), where n is even. Two such actions,
Jor i =4/, i, are conjugate iff i’ =i’ or n—i’; hence

(m)+1
qla) =[2952], wog) =e, ar =¥

(b) Actions of type (1; n,8,%, A), where n = 28, 8 and i are odd. Two
such actions, for © =i’ ,4", are conjugate iff i’ = i’; hence

&((b)) = [‘P_("‘;_ﬂ], Iz(M,) =@, M*=48"xP.

(c) Action of type (2; 2, R), where R is an involution of 8* with 2 fixed
points (8 = {y1, Yz, Ys: 91 +¥2+9Ys = 1}, B(Y1, Y2, ¥s) = (= %1y —Y2, ¥a))
Iz(M,) = Fix(T) = 4 poinis.

II. Actions of Z, on 8'X8* = N:

(a) Actions of type (1; n,n, %, A%) on M, where n is odd. Two such
actions, for i = i',i", are conjugate iff i’ =i’ or n—i'; hence

Ec((a‘)) = zgn—), Iz(M,) =9, M* = N.
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(b) Actions of type (1; n,8,i,Id) on N = M,, where n = 23, and
i 48 odd. Two such actions, for i = i',i", are conjugate iff i’ = i'; hence

fo) = [22], many —e, a =P,

(e) Action of type (2; 2, R) on N = M, where C is an involution of
8 with Fix(C) = &' (C(yn Y25 Ys) = (Y1, Ye, _?/s))7 Iz(Mg) = Fix(T) = 2
Points.

For the proof we need two lemmas. Recall that two 3-manifolds A,
and M, are said to be congruent if there exist two homotopy spheres Z; and
23 such that M, # 2} = M, 45}

3.2. LEMMA. Let T be a generator of a Z,-action on a 3-manifold M
with dimIz(M) < 0. If M is mot congruent to an irreducible manifold, then
there ts am embedding S* —> int M, bounding no 3-cell, such that for each
i either 8°NT (8% =@ or §* = T¢(S%).

Lemma 3.2 is a consequence of Theorem 5.3 in [11].

3.3. LEMMA. An action of type (1; B,8,i,9,) on M, =8 XF is
conjugate to an action of type (1; », 8, 8 —1, pagoa™"'), where a is a self-homeo-
morphism of F which reverses orientation if M is orientable, and apa™! = ¢~ .

Indeed, the actions are conjugate by the homeomorphism given by
(t, 9) > (=1, a(y)).

Proof of Theorem 3.1. By Lemma 3.2, we may use Theorem 4.1
of [11] (for F = &%) and Corollary 4.4 from [11] for actions on S' X 82,
We have the following possibilities:

1. The action of Z, was obtained as a multiple. We deduce from the
formulas in Proposition 3.5 of [11] that

(8' % 8%, Z,) = ([0, 11X 8, Pioyxst,ayxstrny 204 Jo =1

(see Definition 3.2 in [11]). The only free action on S is the antipodal
map. Hence j = 1 or 2 (see [11], 3.2). By Lemma 3.3 we have the following
possibilities:

(a) j = 1,9 = Id, s = »n and either (i) or (ii) holds:

(i) f = Id; then by Lemma 2.2(a) we obtain the actions described

in Theorem 3.1, I.1(a);

(ii) f = A; then by Lemma 2.2(a) we obtain the actions described in
Theorem 3.1, I.2(a), if # is even, and in Theorem 3.1, II(a) if » is odd.

(b) j =2, g =Idx A (we use the clasgification of involutions of
8§ given in [10]), 8 = /2 and either (i) or (ii) holds:

(i) f = 1Id; then by Lemmas 2.2(a) and 3.3 we obtain the actions
described in Theorem 3.1, I.2(b), if r is even, and in Theorem 3.1, II(b),
if r is odd;
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(ii) f = A; then by Lemmas 2.2(a) and 3.3 we obtain the actions
described in Theorem 3.1, 1.2 (b), if r + s is even and in Theorem 3.1, II(b),
if r4 s is odd.

2. The action of Z, was obtained by using a connected sum. We deduce
from the formulas in Proposition 3.5 of [11] that

(8% 8, 2,) = ([0, 11X 8, Ty) Hquustoxstn([0; 11x 8, Ty)
and

8, =8 =1, jo=2, j=1lor?2

(see Definition 3.1 in [11]). Suppose that j = 2; then there is a Z -action
on [0, 1] x &* (generated by a) such that a?|{0} x 8* is the antipodal map.
Thus a2 reverses orientation of [0, 1] x 8%, which is not possible. Thus
j =1 and g,, 9, are involutions of [0,1]x 8% By [9] and [10], there
exist exactly two involutions of [0,1]x 8% namely, A, x A and 4,X R,
where A,(T) = 1—1t, which change boundary components of [0,1]x §°
and which satisfy dimIz([0,1]x 8?)< 0. Thus, we have the following
possibilities (see Proposition 3.7 in [11]):

(a) gy = gy = Ao X A; then by Lemma 2.2(b) we obtain the action
described in Theorem 3.1, I.1(b);

(b) gar = A¢ X 4, gy = Ay X R; then we obtain the action described
in Theorem 3.1, II(c);

(¢) gy = gy = Ao X R; then we obtain the action described in
Theorem 3.1, I.2(c).

Actions described in distinct subcases I.1(a), ..., II(¢) of Theorem 3.1
are not weakly conjugate because either the corresponding spaces of
actions or orbit spaces, or the sets Iz(-) are different. The classification
of actions, described in each of the subcases of Theorem 3.1, is completed
by Lemma 3.3 and by the following

3.4. PrROPOSITION. Let o denote the totality of free Z, -actions whose
orbit spaces are homeomorphicto M*. Then there is a one-to-one correspondence
between." elements of o, up to conjugation (respectively, weak conjugation),
and equivalence classes (respectively, weak equivalence classes) of epimorphisms
H (M*,Z)—~Z,. :

Recall that two epimorphisms a, and a, are said to be weakly equivalent
if there exist a group automorphism A: Z, - Z, and a self-homeomor-
phism f: M* — M*, which preserves orientation if M* is orientable, such
that Aa, = a,fs. If A is the identity, then a; and a, are equivalent.

For the proof of Proposition 3.4 see, e.g., [15].

Thus the proof of Theorem 3.1 is complete.
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4. Actions on §' x P2.

4.1. THEOREM. Each action of Z, on M, = 8'xXP* (p =1d) with
dimIz(M)< 0 8 of type (1; n,n, i, Id). Two such actions, for ¢ = i',4",
are always weakly conjugate, and they are conjugate iff i’ =4 or n—1i';
hence

Ec(.) p— [MH-_I

2] b -6, w-sxp

Proof. We deduce from Corollary 5.6 in [11] that there exists a 2-sided
embedding P’c— §' x P? such that T¢(P?) nP? = @ for each ¢ (0 < i < m).
Now, the method of proof is similar to that of Theorem 3.1. We use Corol-
lary 4.4 from [11] instead of Corollary 4.3 from [11]. Note that I x P*?
and P? do not admit involutions with dimFix(-) < 0.

5. Actions on 8' x D!.

5.1. THEOREM. Each effective action of Z, on S' x D' (generated by T)
takes ome of the following forms (up to conjugation). Each of the subcases
L1(a), ..., II(c) describes exactly one class of weakly conjugate actions.

I. Actions on M, = 8' x D' (¢ = Id).

1. Actions which preserve orientation:

(a) Actions of type (1; n,n, i, Id). Two such actions, for i =1, 4",
are conjugate iff i’ =i or m—i'; hence

£.((a) = [WT—I_]'], Iz(M,)) =9, M'=_8xD.

(b) Action of type (2; 2, A), where A is the antipodal map; 1z(M,)
= Fix(T) = 2 poinis.

2. Actions which reverse oriemtation:

(a) Actions of type (1; n,n, i, A), where n i8 even. Two such actions,
for i =1y, are conjugate iff i = i’ or n—4'; hence

& ((a)) = [ﬂ%ﬂ-], Iz(M,) =9, M= Mb.

(b) Actions of type (1;n,s8,i, A), where n = 23, 8 and i are odd.
Two such actions, for i =4',i’, are conjugate iff i"" = i'; hence

£.((b) = [M;J“i], Iz(M,) = Fix(T°) = 8', M* = §' x D'.

(¢) Actions of type (2; 2,1d); Iz(M,) = Fix(T) = D'UD', M* =
= D'x D'.
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II. Actions on M, = 8' X D' = Mb (p = A):
(a) Actions of type (1; n,n, %, A), where n and i are odd. Two such
actions, for ¢ = i',i"’, are conjugate iff i'’ = ¢’; hence

Glw) = 2, mM) =8, M= m.

(b) Actions of type (1; n, s, i,1d), where n = 28, and + 18 odd. Two
such actions, for i = i',i", are conjugate iff i’ = i'; hence

£((b) = ["’(”;J“i], Iz(M,) = 8, M*=@§xD.

(c) Action of type (2; 2,Id); Iz(M,) = Fix(T) = D'V point, M*
= D

Proof. Theorem 5.1 is probably well-known. We prove it in a similar
manner as Theorem 3.1 by using Theorem 4.1 from [11) for F = D
We also use the fact that for each effective action of any finite group @
on §' X D' there exists a properly embedded 1-disk D' which does not
cut out a 2-disk and such that g(D') nD' = @ or D" for each g €@.

Theorem 5.1 enables us to classify easily the effective actions of
finite groups on 8! X D
5.2. Definition. (a) Let
¢ =2,®D,, = {a,b,c: a*,b",c*, aca "¢, beb~ ¢, abab}.

@, acts effectively on M, = 8'x D' (p =1Id) and T,,T,, T, are
gelf-homeomorphisms of M, which correspond to the generators of G,:
T,(tyy) =1—-%,9), T,y =0C+1/n,y), T,y = (t7A(y))-

(b) Let
G, = D,, = {a, b: a*, b", abab}.
@, acts effectively on Mb = M, = 8'XD' (p = A) and T,,T,

are self-homeomorphisms of M, which correspond to the generators
of G,:

To(tyy) = (1—-t,y), Tp(ty) =(1+2/n,y).

5.3. THEOREM. (a) Hach effective action of a finite group on 8' x D
i8 conjugate to an action of some subgroup of G,.

(b) Each effective action of a finite group on Mb is conjugate to an action
of some subgroup of G,.

6. Actions on S'x D%

6.1. Definition. We say that an #-manifold M with an action of
a finite group @ satisfies condition () if there exists a compact (» —1)-mani-
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fold F such that M = §' X F and there is a properly embedded, 2-sided
F<—8' X F which satisties the following conditions:

(i) M —F is connected,

(ii) F is in a general position with respect to Iz(M),

(iii) for each ge@, g(F)NF =@ or g(F) = F.

6.2. LEMMA. (a) 8' x D*® with an action of a finite group @, where
dimIz (8! X D?) < 0, satisfies condition (x).

(b) Each involution on S' X D? satisfies condition (x).

(¢) 8' x D* with a Zn-action, where

3 Fix(T%) = 8,
1<j<2?

satisfies condition (*).

Proof. (a) follows from Theorem 5.7 in [11], and (b) follows from
Lemma 2 in [7]. For the proof of (¢) see Lemma 2.8 in [5]. '

Let D? = {z e complex numbers: |2| <1}. Now -we introduce the
following self-homeomorphisms of D*:

C(z) =2, A(2)= —z, O0,(2) =e“z, Iy = Oznnms

where h is taken modulo #.

6.3. CoNJECTURE (P. A. Smith). Each orientation-preserving Z, -action
on D® = [0, 1] x D? is conjugate to an orthogonal action (i.e., (f, 2) —
— (ty gin,ny) for some h). ‘

6.4. Remark (Waldhausen [19]). The Smith Conjecture is true for
even n.
The following theorem extends the results of Kim [5]:

6.5. THEOREM. Each effective action of Z, on 8* X D* (generated by T),
which satisfies condition (x), takes one of the following forms (up to conju-
gation). Each of the subcases 1.1(a’), ..., II(d) describes exacily one class
of weally conjugate actions. We assume additionally that the Smith Conjecture
(6.3) is true for each k which divides n. |

I. Actions on S'x D A

1. Actions which preserve orientation (on M, = §8'x D*, ¢ = Id):

(a) Actions of type (1; n,8,%, gn,n), where j =mnfs, (j,h) =1,
0<h<j. Two such actions, for s =8 ,8',h=hn",k",i =14,i", are
weakly conjugate iff 8" = s and there exists a natural number a such that
either

"

i =a’ (mods’) and R’ = ah’ (modj’)
or

"

i =a(s’—7)(mods’) and A"’

a(j'—#') (mod j').
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If a = 1, then the actions are conjugate. For given s we have

) =[ZZRE2] @) = olged. 6,9,
Each class of the actions (up to weak conjugation) contains exactly
[2"1(tp(s.c.m.(s, ) +1)] actions, up to comjugation. M* = 8'x D?; if
J >0, then 1z(M,) = Fix(T*) = 8'. In particular, if j = 1, then we obtain:
(a') Actions of type (1; n,n,t,Id). Two such actions, for i =i',4",
are conjugate iff i’ = i’ or n—1i’; hence

q(@) = [25] mor) —e, e - sxp.

(b) Action of type (2; 2, C), Iz(M,) = D' OD', M* = DP.

2. Actions which reverse orientation:

(a) Actions of type (1; n,%,%,C) on M, = 8' x D* (p = Id), where
n is even. Two such actions, for ¢ = i', ", are conjugate iff i'’ = i’ or n—1i';
hence

bo((@)) = [i”"—;ﬂ] Iz(M,) =@, M = Bs.

(b) Actions of type (1; n,8,%,C) on My, where n = 23, 8 and i are
odd. Two such actions, for i = i’, i"’, are conjugate iff i’ = i’; hence

q(0) =[2252] mOf) - Fxe) = 8x0t, =g x0,

(e) Actions of type (1; n,8,t, AC) on M ,, where n = 28, 8 and 1 are
odd. Two such actions, for i = i’, i’’, are conjugate iff i"’ = i'; hence

L) = [ 2052] mor) - Pxe - o, e - B

(d) Actions of type (1; n,s,%,C) on M,, where n = 2s, 8 i3 even.
Two such actions, for ¢ = i, i'’, are conjugate iff i’ =1 or s—i'; hence

£,((d)) = [¢(8)2+1], Iz(M,) = Fix(T®) = 8', M"* = Bs.

5 — Colloquium Mathematicum 47.2
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(e) Actions of type (2; B, gin,n) OB Mm, where n is even, (n, h) =1,
0 < h<n Two such actions, for h = k', k', are conjugate iff »"’ = h'

or n—h'; hence
() = [ 2B,

Fix(T?) = &' if n>2,

. : Fix(T) = 2 points.
2 poinits if n =2,

Iz(Myy) = I

(f) Actions of type (25 By o) O M, where n i3 even. Two such
actions, for h = b', 1", are conjugate iff ¥’ = h'yn—n', B’ Fn/2 orn—hF
F n/2; hence

Fix(T) = D* U point if n =2,

Tz(M,) = | Fix(T?) uFix(T*?) = 8'UD* if n>2,n/2 is 0dd,
Fix(T?*) = 8! if »/2 is even,
D? int 4 =2

Fix(T) = | Cpoimt A0 =3 ) = [M]
2 poinis if n>2, 2

(g) Actions of type (2; n, gujo,n) o8 Mg, where n is even, n[2 and
h are odd. Two such actions, for h = h', b”, are conjugate iff B’ = h';

hence
n)+1 D*UD*  ifn =2
¢, (@) = [ ¢ () ] Fix(T) = I - !
2 points  if n>2,
Fix(T?) UFix(T™?) = 8'U(D*UD?) if n>2
Iz( M) = o ) ( ) 4 ’ M*= D'x D*.
Fix(T)= D*VD? if n=2,

II. Actions on M, = 8'x D* = Bs (p = O):
(a) Actions of type (1; n,n,t, C), where n and i are odd. Two such
actions, for ¢ = i', i, are conjugate iff i'’ = i’ ; hence

b)) =20, mM) -0, ¥ =B

(b) Actions of type (1; n,s,t, AC), where n = 28, s and ¢ are odd.
Two such actions, for ¢ = i', i, are conjugate iff i = i'; henoce

ée((b)) = [%t-l—], Iz(M,) = Fix(I*) = §', M* = Bs.
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(c) Actions of type (1; », 8, ¢, Id), where n = 28, and i t8 odd. Two
such actions, for ¢ = i',i'’, are conjugate iff i’ = i'; hence

£.((c)) = [%], Iz(M,) = Fix(T*) = §8'x D', M*' = 8'xD*.

(d) Actions of type (1; n,8,t, A), where » = 28, and i ts odd. Two
such actions, for © = i',4", are conjugate iff i = i'; hence

(@) = [ 255,

S'x D' if 8 is even,
Mb if 8 i8 odd,

Iz(M,) = Fix(T*) = M* = Bs.

(e) Action of type (2; 2,CA); Iz(M,) = Fix(T) = D' v 1 point,
(f) Action of type (2; 2, C); 1z(M,) = Fix(T) = D' UD*, M* = D°.

Proof of Theorem 6.5 is similar to that of Theorem 3.1. We give
only the outline. It follows from condition (*) and Corollary 4.5 in [11]
that each Z,-action on §'x D? is obtained by using a multiple or a con-
nected sum for F = D?. We have the following possibilities (we use the
terminology of 3.1 and 3.2 from [11]):

1. Case of multiple. M, = [0,1] x D*. We obtain an action on
8' x D*. Hence j, = 1. Let F; = D? = {i —1} x D* (i = 1, 2).

(@) DinIz(8' X D*) =@. Then j =1, n =8, g =1Id. A simple
computation (using Lemma 2.2 and Proposition 3.13 from [11]) leads us to
the actions described in I.1(a’), I.2(a) or II(a) of Theorem 6.5.

(b) D} N1z(8' X D*) = 1 point. Then j > 1, g| D} = g;4. We deduce
from the Smith Conjecture (6.3) that g = Id X g5 . Now, by a simple
calculation (using Lemma 2.2) we obtain either the actions described in
I.1(a) if f: D} — D} reverses orientation (D} is oriented in agreement with
the orientation of [0, 1] x D*; we may assume that 0 < h < j by Fact 6.7
below) or the actions described in I.2(d) or II(b) if f preserves orienta-
tion.

(¢) Dinlz(8'x D*) = D'. Then ¢|D? = C. Hence g = Id xC (for
f we have 4 possibilities: f = Id, Oy A or AC). Now, simple calculations
(using Lemma 2.2) lead us to actions described in I.2(b), I.2(c), II(c) or
II(d) (note that the actions of type (1; »,8,%, A) on M, and on M ,, are
conjugate).

2. Case of connected sum. M, = M, = [0, 1] x D*>. We obtain an
action on §' X D*. Hence j, = 2 and s, = 8, = 1. Let F; = D} = {0} x D*
(¢ =1,2).



232 J. H. PRZYTYOKI

(a) DinIz(8" %X D?) =@. Then j = 1. Since the only involutions
on [0, 1] x D? (free on the boundary) are 4,x Id and 4, x C, after simple
computations (using Lemma 2.2(b) and Proposition 3.13 from [11])
we obtain one of the actions described in I.1(b), I.2(e), I.2(f) (for n = 2),
II(e) or II(f) of Theorem 6.5.

(b) D}NIz(8' x D*) =1 point. Then T?|D; (i =1,2) is of type
9y.n,» Where n = 2j. We infer, using the Smith Conjecture and the result
of Kim [6], that T, is of type (2; #, g, ), Where n is even, or of type
(25 My gins2,ny); Where n is even and /2 is odd (similarly T,). Now, simple
computations (which exhaust all the possibilities for f) and the use of
Lemma 2.2(b) lead us to the actions described in I.2(e), (f), (g) of Theo-
rem 6.5.

(¢) DinIz(8' x D*) = D' This case cannot oceur.

To complete the proof of Theorem 6.5 it remains to verify the fol-
lowing:

‘1. Actions described in distinct subcases I.1(a), L1(b),..., IL(f) of
Theorem 6.5 are not weakly conjugate. These actions differ either by the
space of action or by the orbit space, or by the set Iz(-), except for the case
of the actions I.2(e) and I.2(f), where #/2 is even.

It is sufficient to consider the case » = 4 because otherwise we have
different actions in the neighborhoods of fixed points. We distinguish these
actions as follows: generators 7, and T, of the actions 1.2(e) and I.2(f),
respectively, are defined by the formulas

T,(t2) = (1—t7 9(4,1)(z)) and T,(t,2) = (L—1, Ogny_rpa) -
Both actions are on M;; = 8'x D* Let
y =8 x{0} = Fix(T}) = Fix(T7), e ={0}x{0}, a' = {}}x{0}

(Fix(T,) = Fix(T,) = ava'). Let a, and a, be self-homeomorphisms of
M4 defined by the formulas

a,(t,2) = (t+%,2) and a,(t,2) = (‘L""ty O(z))

o; is T;-equivariant and satisfies a;(a) = a', a;(d') = a, a;(y) =y
(¢ =1, 2). Furthermore, a, preserves the orientation of y, and a, reverses
the orientation of y. We assume that there exists a self-homeomorphism
B of My, which conjugates 7', and T, (i.e., BT,f~! = T,). From the existence
of a; and a, it follows that we may assume that (i) f(a) = a, f(a’) = a/,
(ii) B(y) =y and B/y preserves orientation. f§ maps a T,-equivariant
regular neighborhood of @' onto a T,-equivariant regular neighborhood
of a’. The following fact gives a contradiction:
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6.6. FACT. Let T; (i = 1, 2) be a generator of a Z,-action on [0, 1] x D?
defined by the formulas

T; (t,2) = (1 -1, 9(4,1)(z)) and T; (t,2) = (1 —1, 9.3 (z)) .

Then each self-homeomorphism which conjugates T; and T, reverses
the orientation on [0,1] X {0} = Fix(T?) = Fix(T;).

II. We have to classify the actions described in all subcases of The-
orecm 6.5. First, we consider the actions described in the subcase I.1(a).

6.7. FACT. Actions given by

Ty(ty2) = (t+5/8, gam(2)) and  Tu(t,2) = (t+/8, Gin,nss(2))

on My, = 8' x D* are conjugate (n = js).

Proof. We conjugate these actions using the function (¢,z2) —»
— (t, Ozm(z)).

By Lemma 3.3 and Fact 6.7 we know when the actions I.1(a) are
conjugate (weak conjugate). We can distinguish these actions by com-
paring the action of T on Iz(:) = 8' and the action of T® on 8'x D

We classify the actions in the remaining cases of Theorem 6.5 using
Lemma 3.3 and Proposition 3.4 (for M, M, —1Tz(-), Iz(-) or M /T’ for
some j). This completes the proof of Theorem 6.5.

7. Actions on 8" X §8'. Let 4, C, O,, g, be self-homeomorphisms
of 8! which are the cuts to the boundary of the corresponding self-homeo-
morphisms on D?.

7.1. THEOREM. Each effective action of Z, on S' X 8' (generated by T)
takes one of the following forms (up to comjugation). Each of the subcases
I1(a), ..., II(g) describes ewactly ome class of weakly conjugate actions.

I. Actions on S' x 8.

1. Actions which preserve orientation (om My = S8' x 8'):

(a) Action of type (1; n,n,1,1d); Iz(My,) = @, M* = 8 x 8.

(b) Action of type (2; 2, 0); Iz(My,) = 4 points, M* = 8.

(¢) Nonstandard actions of Zy on 8'x S'. These actions (two up to
conjugation) are constructed as follows:

We use a conmected sum (terminology of 3.1 im [11]). Let

(‘Sl X 83 (D?),, T') = (15 3,3,1, Id)(Dl.Id)# (1;3,3,1, Id)(Dl.Id)

(D},D}, 1)
and
j=8 =8 =1, j, =23, D};D;CSIX{I}“

Now, we extend this action to 8' x 8'. If T is a generator of this action,
then T* generates the second action in (c). Iz(8' x §') = 3 points, M* = §°.
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(d) Nonstandard actions of Z, on S'x8'. These actions (two up to
conjugation) are constructed as follows:
We use a connected sum. Let
(8" x 8" 4 (D), T') = (1; 4, 4,1, W)prza #,

(oL,pl, f)(l ;4,4,1, Id)(nl,ld)
and

j=8=8=1, j,=4, Di,D;c 8 x{1}.

Now, we extend this action to 8' X S'. If T is a generator of this action,
then T? generates the second action in (d). Iz (8" x 8') = 4 points, Fix(T) = 2
points, M* = 8.

2. Actions which reverse orientation:

(a) Actions of type (1; n,m,¢,C) on My = 8' x 8", where n is even.
Two such actions, for i =1 ,i’, are conjugate iff i'" =i’ or n—1'; hence

1
Ec((a‘)) = [_?i”.;L], Iz(My,) =9, M*' =B.

(b)‘Actiom of type (1; n,8,1,C) on M, where n = 23 and s i3 even.
Two such actions, for i = i',i", are conjugate iff i’ =i’ or s—i'; hence

& (M) = ["’(8)2“], Iz(M,) =9, M'=B.

(c) Actions of type (2; B, g,.qy) o8 My, where n = 23, 8 and © are
odd. Two such actions, for i = 1,4 ', are conjugate iff i’ = i'; hence

n)+1 . °
£, ((0) = [%_], Lo(My) = Fix(T*) = 8 U8, M* = §'xD'.

(d) Actions of type (2; n, giq) on M,, where n = 28, 3 and i are
odd. Two such actions, for i = 1,4, are conjugate iff i’ = i’'; hence

n)+1 :
(@) = [f%__]’ Iz(M,) = Fix(T*) = §', M*' = Mb.

II. Actions on My = 8' x 8' = B:

(a) Actions of type (1; n,n, i, C*), where n is odd. Two such actions,
for i = i',4", are conjugate iff i’ = i’ or n—1'; hence

7
t(@) =2 wm) -0, ¥ =B

(b) Actions of type (1; n, s, i, AC), where n = 23, 8 and i are odd. Two

such actions, for i = i',4"', are conjugate iff i’ = i'; hence

& (b)) = [&;Jﬁ], 1z(M,) =9, M*=B.
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(c) Action of type (2; 2, A); 1z(My) = Fix(T) = 2 poinits, M* = P2

(d) Action of type (2; 2,1d); Iz(My) = Fix(T) = 8'U2 points,
M* = D2

(e) Nonstandard actions obtained by using a connected sum

(B’ T) = (Mu T1) :ﬁ:(Fl.Fz,f)(Mm Tz)’

where (M, T,) = (1; n,n/2,1, A)(Dl,ld)’ J=mn/2, jo=8 =1, 8 =2,
n/2 and i are odd, M, = Mb, T,(l,y) = (t+4i/n,y), F, = 8 x {0}
c OM,, and F, = OM,. Two such actions, for i = i,i"’, are conjugate
iff i’ = 1'; hence

alo) = [252] e - Fxeen -5, a* - 0.

(f) Nonstandard actions obtained by using a connected sum

(B, T) = (M,, T,) :E':(Fl,Fz,f)(MM Ts),

where (M, T,) = (1; n,n,%, A)pl1q, B 8 a multiple of 4, j = n/2,
Jo=8 =1, 8 =2, M, = Mb, To(t,y) = (t+4i/n,y), F, =8 x{0}
c OM,, and F, = OM,. Two such actions, for i =1 ,i’, are conjugate
iff i = 1'; hence

, Iz(B) = Fix(T"?) = S'US', M* = Mb.

£ () = 2

(g) Nonstandard actions obtained by using a connected sum
(B, T) = (Mb, ) apto,0010,0( Mb, Ts),

where (Mb, T,) = (Mb, T;) = (1; m, 8,7, Id)p1, 4 with n = 23 and ¢ odd.
Two such actions, for i = i',i", are conjugate iff i'" = i'; hence

tle) =[P mm =meEy =g bs, a = sxo

Outline of the proof. The method of proof is similar to that of
Theorems 3.1, 4.1, 5.1, and 6.5. The difference is that we do not always
find a circle in 8 X 8! which satisfies condition () (Definition 6.1).

1. Free actions on M = §' x 8.

(a) The case of a free orientation-preserving action on §' % §' is
described, e.g., in Theorem 2 from [12].

(b) We have M* = B in all other cases. The classification of Z,-ac-
tions on M = B and orientation-reversing actions on M = §'x ' is
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reduced (by using Proposition 3.4) to the classification of epimorphisms
¢: H,(B,Z) - Z,. We obtain this classification as follows:
Let (a, b) be standard generators of =,(B). Then

H\(B,Z) = 7,(B)/[%(B), %:(B)] = {a, b : a*b?}/[=,(B), =, (B)]
= {a,b:a’V,aba"'b"'} = ZDZ,.

H, & kerp can take one of the following forms (up to equivalence):
(i) H, is generated by a" and ab. Then M = B if » is odd, and
M = 8'x 8" if n is even. We obtain the actions described in II(a) and
I.2(a) of Theorem 7.1, respectively.
(ii) » = 2s8; H, is generated by b°*'a. Then M = B if s is odd, and
M = 8'x 8 if s is even. We obtain the actions described in II(b) and
I1.2(b), respectively.

(ii') » = 28; H, is generated by a**'b. This case is the same as case
(ii) because there exists a self-homeomorphism of B which changes the
generators a and b.

H, determines the action up to weak conjugation. We obtain the
classification (up to conjugation) using Proposition 3.4 and the fact that
each gelf-homeomorphism of B can map a onto a, — a, b or — b exclusively.

2. Action on M = §' x &' with dimIz(M) = 0.

Let p: M — M*, p (Iz(M)) = m points a,, a,, ..., a,, Where m > 0,
p|M—1z(M) is a covering. For each ¢ let n/m; denote the cardinality of
the set p~!(a;). Then

n(y(M*)—m) = (8 iS‘)—Z'n/mi = —Zn/m,-.
f=1

i=1

Hence m— y(M*) =.§ 1/m,;; of course, n > m; > 1 for each ¢, and
the cardinality of Iz(M )“i.:sl equal to 2’,"‘ n/m,. Now we may deduce that
x(M*) =2 or 1, and so M* = §° oi-ule. Furthermore, it follows from
Smith’s theory [1] that:

7.2. The cardinality of Fix(T) is less than or equal to 4 for 0 < i < m.

We have the following possibilities:
(a) M* = §*; then

m
m—2 = Zl/m,-,
=1
which gives us 3 possibilities:

(i) m =4;4—2 = 1+3+3+% (» = 2 by 7.2). We consider a circle
Sic— M* which separates the points a, and a; from a, and a,. We lift
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this circle to M and use Theorem 4.1 from [11] for F = §. Since §; discon-
rects M, case (a) (i) is obtained by using the connected sum (the termi-
nology of 3.1 in [11]) for 8, = 8, = 1, j, = 2 (if j, # 2, then there exists
an action on §* with 3 fixed points, which is not possible), T, = T, act on
M, = M,= 8'x[0,1](Ts(t,y) = (1—t,1—y)), and F; = §' x {0} = M,
(?= 1, 2). Thus we obtain the action described in I.1(b) of Theorem 7.1.

(i) m =3;3-2=4%+1}1+4% (»n =4 by 7.2). We consider a small,
Z,-invariant neighborhood Vi, of Iz(M) in M. Let p = p|M —int(V7y,).
Im(p) is a 2-sphere with 3 holes. The covering of the boundary, say o,,
of some hole consists of two 1-spheres. Let D, be a 1-disk which discon-
nects Im(p) into 2 annuli and let the ends of D, be in 9,. We lift D, to
M —int(Vy,). Since D, disconnects Im(p), we have to do with a connected
sum for F,, F, = D' exactly in the same manner as in I.1(d) of Theo-
rem 7.1 (up to conjugation).

(i) m =3; 3—2 =31+4+1 (»n =3 by 7.2). We may deduce,
similarly as in (ii), that the actions considered in (iii) are the same as the
actions described in I.1(c) of Theorem 7.1.

(b) M* = P?; then

m
m—1 = Zl/m,-.
i=1

Hence m = 2,2—1 =443 (n =2 or 4 by 7.2). We may deduce,
similarly as in (a) (i) that » = 2 and we obtain the action described in
II(c) of Theorem 7.1.

I1(e) (and I.1(d)) contains two actions (up to conjugation) because
each orientation-preserving homeomorphism of §'x 8! 3 (D?); maps
boundary onto boundary and preserves orientation of the boundary (we
consider actions on M —int(X), where X is a regular neighborhood of
Iz(M)). We use Proposition 3.4.

3. Actions on M = 8' X §' with dimIz(M) = 1. Of course, » is
even: n= 28. If » € Iz(M), then T%(z) € Iz(M) for each ¢ and dimFix(T*)
= 1. We have two possibilities (a) and (b):

(a) There is a 2-sided embedding S'<— M such that §'e—Fix(T®).

We use the following lemma:

7.3. LEMMA. If §' is 2-sided in M and S'<>1z(M), then S is Z,-
invariant (i.e., T'(8') = 8 for each 1).

Proof. By Smith’s theory [1], Iz(M) contains at most 2 circles.
Assume that 8) = T(8') # 8'. If M = §8' x §', then T*® reverses orienta-
tion. Thus & is odd, which contradicts the fact that 7¢(8') = 8'. If M = B,
then B— 8} —8' is not connected and has exactly two components (7°
changes these components). Thus s is odd, which contradicts the fact
that T%(8') = S
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Now, we know that T(8') = §8'in (a). Let M, be a small, T-invariant,
regular neighborhood of 8'. By Theorem 4.1 in [11], (M, T) is obtained
by using a connected sum for F'; = F,being a circle, j = n/2, M, = 8' x D!
with an action of type (1; n,n/2,4, A)p1 14 (see I.2(b) of Theorem 5.1),
8, = 1. We have the following possibilities:

(i) 8, = 2, M, = Mb with an action given by

(t,y) > (t+4i/n, y);

then we obtain the action described in II(e) of Theorem 7.1.

(ii) 83 = 1, M, = Mb with an action of type (2; 2, 4)p1, 4); then we
-obtain the involution described in II(d).

(iii) 8, = 1, M = §8'x D' with an action given by

(t,y) > (t+1/2+2i/n, A(y));

then we obtain the involution described in I.2(d).

(b) There exists a 1-sided embedding 8'<>Iz(M) c M = B. We have
two possibilities:

(i) 8* # T(8') = 8;. It is easy to see that B—8'— 8} is connected
and equal (after attaching the boundary) to S8'x D'. By Theorem 4.1
in [11] and Theorem 5.1, the action of T is as in II(f) of Theorem 7.1.

(ii) T(8') = 8'. We deduce in the same way as in case (b) (i) that
we have to do with the action described in II(g).

We can obtain the classification of actions described in the subcases
I.1(a), ..., II(g) similarly as in the previous theorems. Actions described
in L.1(e), (d), II(e), (f), and (g) are nonstandard. It follows from Theorem 6.5
and from the fact that each standard action on §'x §' extends to
a standard action on §' X D?. This completes the proof of Theorems 7.1
and 1.4.

8. Final remarks. We may use the results obtained in this paper to
classify actions of Z, on a connected (and disk, see [7]) sum of manifolds
considered in our paper. This problem will be studied in [13].

One can extend Theorem 3.1 and Lemma 3.2 to actions which satisfy
condition () (Definition 6.1), similarly as in Theorem 6.5. Then, as a par-
ticular case, we obtain the classification of involutions on §8' x §* (see [4]
and [17]).

It is of great interest to verify when condition (*) is true. There are
only partial results, e.g., those of Tollefson [18]. (P 1271)

Recently, Professor J. Birman has informed me that the Smith
Conjecture has been established. “The proof of the Smith Conjecture
represents a culmination of the efforts of many mathematicians... The
broad outlines of this proof were first brought into focus by W. Thurston.”
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and

W. Meeks ITI and S. T. Yau in Topology of three-dimensional manifolds
the embedding problems in minimal surface theory have proved that

condition (%) is satisfied for §' x D?, 8' x P% and §' X §°.

I wish to thank all the people who helped me to work in mathematics

in 1978, a year which was particularly difficult for me.
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