COLLOQUIUM MATHEMATICUM

WOL. XXVI1I 1973 FASC. 2

SOME EXAMPLES OF WEAKLY ASSOCIATIVE LATTICES

BY

E. FRIED aNp G. GRATZER * (WINNIPEG, CANADA)

1. A weakly associative lattice, or W A-lattice (called T-lattice in [1]
and trellis in [3]) is a non-void set A with two binary operations A and v
satisfying the following identities:

(1) oAz =2z and zve = r (idempotency);
(2) oAy =yAxz and vy = yva (commutativity);
(3) xA(zvy) =z and zv(rAy) = 2 (absorption identities);

(4) ((@Az)v(yaz))vz =z and ((wve)A(yve)az =2 (weak associative
identities).

In a WA-lattice we set # <y for #Ay = 2 (or, equivalently, for
xvy = y), and then the relation < satisfies the following rules:

(6) #<w;
(6) o<yand y<woimply z =y;

(7) for all # and y, there is a 2 such that x <z and y <z, and z2< %
for all u satisfying « < % and y < %;

(8) for all # and y, there is a 2z such that x>z and y> 2, and 2> %
for all  satisfying z > % and y > «.

All of rules (5)-(8) are obvious, # = avy satisfies (7) and 2z = zAy
satisfies (8). Rules (5)-(8) give an alternative axiom system, in terms
of <, of a WA-lattice.

Note that (4) takes the following forms:

x <z and y <z imply that avy < 2, and dually;

x <z and y <z imply that (zvy)vz = zv(yvz), and dually.

The latter shows that (4) is a weaker form of associativity.

* Research of both authors was supported by the National Research Council
of Canada.
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Every lattice is, of course, a WA-lattice. More importantly, every
tournament can be regarded as a WA-lattice (see [1]). A tournament
is a non-void set A with a binary relation < satisfying the following
rule:

(9) for all z, y e A exactly one of the following three possibilities holds:
r<y, =9 y<ua

Setting # <y for # <y or ¢ =y, it is obvious that a tournament
satisfies (5)-(8).

Tournaments play the role for WA-lattices as chains (fully ordered
sets) for lattices. Therefore, any identity to be used to define a class of
WA-lattices should be first tested whether it holds for tournaments.

A case in point is the distributive identity

(D) zA(yvz) = (zAy)v(TAZ2).
To see that this fails for tournaments take the tournament
Z ={0,1,2},0<1,1<2,2<0.
Then
0A(lv2) =0A2 =2, (0A1)Vv(0A2) =0Vv2 =0,

and so (D) fails in Z. Worse than that, (D) forces associativity. To see
this observe that a WA-lattice is a lattice if and only if < is transitive.
Now assume (D) and let a < b < e¢. Then

anc = an(bve) by (D)
= (anb)v(anc) = av(anc) =a Dby (3),

and so a <c.

In this note we describe various distributive identities and some
variants of isotone identities and show their independence. The last
section contains a result showing the importance of one of these identities.

2. The following is a list of all identities we are going to consider
in this note. Some of them are written as inequalities and implications
for ease of understanding. It is easy to convert them into identities:

D,)  zA(yve) = ((@Ay)v(@A2))A(yv2),
(Dy) v (yaz) = ((@vy)A(zva))v (yaz2),
(DR)  zA(yve) < (@Ay)v(@A2),
(DY) av(yaz) = (wvy)a(ove),

(1) ZAY S TVY,
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(1) y < #z implies that zAy < avz,
<

(Is) Yy

It is obvious that (D ,) implies (D% ), and (D) implies (D} ). Observe
that (I,) is a special case of (I,).

THEOREM 1. All seven identities listed above hold in any tournament.
The first four (the D-3) define distributivity of a lattice. The last three (the
I-8) hold in amy lattice.

Proof. Three elements of a tournament either form a chain or are
contained in a subalgebra isomorphic to Z. In the first case they are
in a distributive lattice, so the D-s hold. In the latter case we have to
check that the D-s8 hold in Z, this was done in [2] (see also Lemma 2).

Identity (I,) holds in any lattice. If ¥y < 2z, then Ay <y <2< 2v2,
therefore (I,) holds in any lattice. Finally, if y <2, then (zvy)vz = av
v(yvz) = xvz provided that v is associative; hence (I;) holds in any
lattice. This completes the proof.

3. The verifications of (D ,) and (D, ) will be facilitated by the follow-
ing observation (the elements e¢ and f are called comparable if ¢ < f or
f<e):

LEMMA 2. Let A be a WA-lattice and a,b,ceA. If at least two of the
pairs {a, b}, {b, ¢} and {c, a} are comparable, then (D,) and (D) hold for
a, b and c.

Proof. For reasons of symmetry and duality, it is sufficient to verify
that

(10) av(bac) = ((avd)a(ave))v(bac).

z implies that (zvy)vz<avz.

If a>bd, then (avb)a(ave) = an(ave) =a by (3), proving (10).
If a > ¢, the same reasoning works.

I a<b and a < ¢, then the right-hand side of (10) is (bac)v(bac)
= bAac¢ which equals av(bAac) by (4).

Excluding the possibilities discussed above, we are left with a < b or
a<¢ and b<c¢ or ¢<b. For reason of symmetry we can assume that
b < ¢, in which case (10) takes the following form:

(11) avb = ((avb)A(ave))vb.

Now if a<<b, then we get b = (ba(ave))vd, which holds by (3).
Finally, if a < ¢, then (11) becomes

(12) avb = ((avb)ac)vb.

Since a < ¢ and b<c¢, (4) yields avb < ¢, hence (avb)ac = avb.
By (4), (avd)vbd = avb, proving (12). This completes the proof of Lemma 2.
Now we are ready to present our two examples.
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Let T, = {0y, 0, %;, i3} be a tournament and 4, = T,v{a,.b, ¢}. For
cv,Yel, let <y in A, iff <y in T,. We define < on 4, as follows:

13) a<b;
(14) a<o0,<z<t,<a for 2 =0> and =z = ¢;
(16) b<og<o<ig<b for ¥+ =a and =z = .

This is shown on Fig. 1 with -y representimg z < y. Reeall that
the arrows in 7T'; are as yet unspecified.

Fig. 1

Observe that all pairs of elements are comparable in A, with the
exception of {a, ¢} and {b, c}. Therefore, xtAy and avy exist for all pairs
{z, y} with the possible exceptions of {a, ¢} and {b, ¢}. However, both
of these pairs have exactly one common upper bound and lower bound,
respectively, and so

(16) baec =0, and bve =1,
a7) anc =0, and ave =t,.

We conclude that 4, is a WA-lattice.

THEOREM 3. (D,) does not imply (D). In fact, (D,) does not imply
(D) even in the presence of (DY) and (I,).

Proof. Let us investigate the distributive identities in 4,. By Lem-
ma 2, all distributive identities hold in A4, under all substitutions except-
ing a, b, ¢ and its permutations. For {y, 2} = {b, ¢}, (D,) (and therefore
(D})) holds; similarly, for {y, 2} = {a, ¢}, (D) and (D) hold. For {y, 2}
= {a, ¢}, (D%) and also (D,), is equivalent to iy <o, in T,. Simi-
larly, for {y, 2} = {b, ¢}, (D)) and also (D), is equivalent to i, < o,
in 7,. Finally, for {y, 2} = {a, b}, (D}) holds while (D,) is equivalent to

(18) 0, = ba(0;voy).
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Dually, for {y,z} = {a, b}, (D) always holds while (D) holds iff
(19) 1y = aVv (1;A%,).

Thus if 7T, is a tournament in which ¢, < 0, < 0, and 7, < %,, then (18)
holds and (19) fails to hold in 4,, and so A4, becomes an example in which
(D,) and (DY) hold, but (D). fails to hold.

It is easy to see that (I,) holds in 4, iff 0, < ¢, and 0, < ¢,. We can
assume these to hold in 7, in addition to the previous relations, so A4,
will also satisfy (I,). This completes the proof of Theorem 3.

Observe that if we further assume that ¢, < o, then (I,) fails in
A;: a<b does not imply that are< dve.

The next example shows that (D,) does not even 1mply (D).

THEOREM 4. (D,) does not ¢mply (DY) even in the presence of (I,).

Proof. Let 7', be a tournament on the six elements o,, 0,4, 05, ;4 %2
and 43. Let 4, = T,U{a,, a,, a;} be a nine element set. We impose on 4,
the relations of 7', and

(20) 10 <0, <0, 0,<@ <ty 03<a,<~is,

and the relations for a, and a, can be derived from (20) by adding 1 and 2,
respectively, to the indices (modulo 3), see Fig. 2.

Fig. 2. The relations of (20)

To show that A4, is a WA-lattice it is sufficient to compute zAy
and zvy for # and y incomparable; therefore, we can assume that  # y
and z, y ¢{a,, a,, a;}. For instance, a, has three upper bounds o,, i, and s;
a, hag three upper bounds o,, 4; and 4,, hence a,v a, = i;. Similarly, a;Aa,
= 05. The rest follows by cyclic permutations of the indices.

By Lemma 2 again, it suffices to check the dlstrlbutlve identities
for {#,y, 2} = {a,, a,, as}.

For instance,

1A (BaV ag) = GyASy = iy,

(814 3)v (837 Gg))A a5V G5) = (03V 05) Ay,
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thus (D,) holds iff
(21) 1, < 03V05, 13K 0,VO5, 13 0,V0,.
Similarly, (DY) fails if
(22) 05 < Gy A 5.
So choose the relation in 7', as follows:
(23) 0, <0< 03<0;, 13<05, 13<0q, 9 <0y,
(24) 03 < 1y < 1y.

Then (23) implies (21), and (24) implies (22), therefore, A, satisfies
(D,) but not (DY).
Finally, we assume that in T, we have

(25) 0, <%, 0<%, and o053<ts.

We claim that A, satisfies (I,). Indeed, let {z,y,2} < A,. f y = 2
then (I,) reduces to (I,) which holds by (25). If {z, y, 2} is a tournament,
then (I,) holds by Theorem 1. Finally, if ¥ < 2 and {, v, 2} is not a tour-
nament, then, say, ¥y = a,, 2 = a,, and y e{0,, %5, 93}; in these cases (I,)
holds. This completes the proof of Theorem 4.

4. For any WA-lattice 4 there is a maximal lattice homomorphic
image 4 under a homomorphism ¢: a—a.

It was observed in [2] that, for WA-lattices in the equational class
generated by Z, the map ¢ can be described as follows:

A sequence ag, ..., a,_, of elements of A is called a cycle if ay < a,
<...<@,_; < a. Then, for a,bed, a # b, ap = by if and only if there
exists a cycle containing @ and b.

THEOREM 5. The above-mentioned property of ¢ holds in any W A-lattice
satisfying (I3) and its dual.

Proof. Let ® be a binary relation on A defined by the following
rule: a = b(@) iff a = b or there is a cycle of 4 containing a and b.
Obviously, @ is an equivalence relation (for the transitivity of @ observe
that the set union of two cycles can be made into a cycle again since the
elements of a cycle are not necessarily distinct).

Let a = b(@) and ced. We want to show that ave = bve(0@) and
anc = bac(0). These are obvious if & = b. Now, let a # b. Thus there
is a cycle dy, ..., d,_; containing a and b. Consider the sequence

(26) dyve, (dyve)vdy, dive, ...y d,_ve,(d,_ve)vd,.

Then dyve < (dyve)vd, by (4), (dyve)vd, < d,ve by (I;), and so on.
Therefore, dropping the repetitions in (26) will yield a cycle containing
ave and bve. anc = bac(@) is verified similarly.
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It is obvious that 4 /@ is a maximal lattice homomorphic image of 4.
In Fig. 3 there is shown that the conclusion of Theorem 5 does not
hold in any WA-lattice. In A,, there are no cycles, however, |4, = 1.

ol

Fig. 3

In the WA-lattice of Fig. 4 the conclusion of Theorem 5 holds but (1)
fails.

Fig. 4
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