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1. Introduction. For the moment let X,, X,,... be independent
identically distributed - (i.i.d.) real-valued random variables such that
EX, =0, EX]; =0*> 0, and as usual write 8, =X,+X,+... +X,
(n > 1). In this setting the law of the iterated logarithm (LIL) gives rather
precise information on the fluctuations of the sequence {8,} in that it
asserts

(L.1) P{w: limd(s”(w), [—a, a]) = o} =1
and

[ . ( 8 (o) ) _r_ _
(1.2) Plo: G’{ " .n>1} =[—o, a]}—l,
where

d(r, A) =inf|lz—y|,
: yed
C({b,}) stands for all limit points of the sequence {b,}, and throughout
the paper* we assume that

n

V2nloglogn  for n >3,
1 otherwise.

Now assume that B is a real separable Banach space with norm ||-||.
A rather natural question to ask is whether the analogues of (1.1) and (1.2)

hold if X,, X,, ... are i.i.d. B-valued random variables such that EX, = 0
and E|X,|? < oco. That is, under these assumptions one might hope to

* This is a survey article presented at a special session of the 1976 Annual
Summer Meeting of the Institute of Mathematical Statistics and was supported in
part by NSF Grant MPS75-05855.
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prove that there exists a bounded symmetric set K < B such that

(1.3) P{ﬁmd(-‘z—:, K) = o} =1
and

o) - -
‘where

d(z, A) = inf |lo—y|
yeAd
and C({b,}) stands for all limit points-of {b,} in B.

If B is a finite-dimensional Banach space, then one can produce
a limit set K (determined completely by the covariance matrix of X,)
such that (1.3) and (1.4) hold under the ciassical assumptions mentioned
previously. However, if B is infinite dimensional, then (1.3) and (1.4)
will not necessarily hold for all i.i.d. sequences {X,} satisfying the classical
moment assumptions EX; = 0 and E|X,|® < oo. This can easily be seen
from an interesting example due to Dudley and Strassen [3] involving
random variables with values in C[0, 1]. This example has been construct-
ed to show that the central limit theorem (CLT) does not always hold
for Banach space valued random variables, but applies equally well to
the LIL.

In the example of Dudley and Strassen the random variables are
actually uniformly bounded with probability one, 8o any result valid for
all i.i.d. sequences in all separable Banach spaces must involve something
more than moment conditions. Therefore, the following obvious ques-
tions present themselves:

(1) Can one prove the LIL for special sequences of i.i.d. random
variables with values in spaces like C[0, 1]*%

(2) For which infinite-dimensional Banach spaces, if any, does the
LIL always hold for i.i.d. random variables under the classical moment
agsumptions EX, = 0 and E|X,|*< oof

(3) Does a “general result” hold for all real separable Banach spaces B
and for all i.i.d. B-valued random variables satisfying the classical moment
assumptions ¢

Before we answer these questions we first turn to the construction of
the limit set K involved in the LIL.

2. The limit set K. Let x denote a Borel probability measure on B
such that

[IelPdp(@) < 0 and  [adu(s) = 0.
B B
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Let § denote the linear operator from B* to B defined by the Bochner
integral

(2.1) 8f = [af(@)du(z) (feB*).

B

Let H, denote the completion of the range of 8§ with respect to the
norm obtained from the inner product '

(2.2) (8f, 8g),= [ f(2)g(a)du(a).
B

Then, it is fairly easy to see that the following propositions hold:
(i) H, can be realized as a subset of B and the identity map<: H, - B
is continuous.
In fact, for # € H, we have

(2.3) ol < ( [ Iyl dp(y))™ o,
B

(i) If I': B*— H, is the linear map obtained by restricting an
element of B* to the subspace H, of B, and if we identify H, and H,
in the usual way, then I' = §.

(iii) If K is the unit ball of H,, then K is a norm compact, symmetric
convex get in B. Further, for each f € B* we have

(2.4) supf(z) ={ [ [f(@)Pau@)}”.
zeK B
(iv) H, is uniquely determined by the covariance operator

T(f,9) = [fl@)g(@)du(x) (f,9eB").
B

The proofs of (i), (ii), (iii), and (iv) are fairly elementary, and appear
in [6]or [7].

The point of the above construction is that the limiting set K in our
results can be taken to be the unit ball of H,, where u = 2 (X,). Here,
of course, #(X,) denotes the common distribution induced on B by the
i.i.d. random variables {X,}.

3. The LIL for B-valued random variables. A partial answer to
question (3) is our first theorem which is given in [6].

THEOREM A. Let X,, X,,... be 4i.4.d. B-valued random variables
such that EX, = 0 and E|X,|? < oo. Then

(I) If K denotes the unit ball of Hgx,), then K is a compact symmetric
convex subset of B such that

(3.1) P{o({&: n> 1}) ¢ K} = 0.

a,
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(II) In addition, if K is as in (I), then

(3.2) P{liind (%:-, K) - o} —1
and

(3.3) P{G ({%: n> 1}) - K}' =1
off

(3.4) P{{—f—": n = 1} 18 conditionally compact in B} =1.
n

One interesting aspect of Theorem A is (3.1) which implies that all
clustering must be in the limit set K constructed in Section 2. Further-
more, it is easy to see that (3.4) and (3.1) imply (3.2), and since K is com-
pact, (3.2) implies (3.4). Hence, what is really required to establish The-
orem A is (3.1), and that (3.2) (or (3.4)) implies (3.3). That (3.3) always
follows from (3.2) (or (3.4)) is useful to know, since previous to Theorem A
this sort of result was often the most difficult aspect of the LIL.

Of course, the main difficulty with Theorem A is in establishing (3.2)
or (3.4). A more useful answer to question (3) will follow later (see The-
orem 4.1), but first we turn to a brief description of earlier results in the
area. Theorems B and C provide answers to question (1) and Theorems D
and E to question (2).

THEOREM B (LePage [11]). If X,, X,,... are independent B-valued
random variables such that £(X,) = u (k>1), where u 8 a mean zero
Gaussian measure on B, then (3.2) and (3.3) hold with K the unit ball of H,,.

THEOREM C (Kuelbs [6]). If X,, X,,... are ii.d. C[0, 1]-valued
such that EX,(t) =0 (0<t<1), E|X )5 < oo, and {X,(1): 0<t<1}is a
martingale in t, then (3.2) and (3.3) hold with K the wnit ball of Hgx .

Remark. If R(s,t) = EX,(8) X, (¢) (0 <s,t<1), then Hg(x,) equals
the reproducing kernel Hilbert space Hy generated by the covariance
kernel R.

TaEOREM D (Kuelbs [6]). Let X,, X,, ... be 1.i.d. Hilbert space valued
random variables such that EX, = 0 and E || X,|? < oo. Then (3.2) and (3.3)
hold with K equal to the unit ball of Hgyx ).

Remark. Theorem D also holds (hence question (2) has an affirmative
answer) if X,, X,, ... satisfy the classical moment conditions and have
range B, where the norm on B is sufficiently smooth. For example, see [5]
and [6] for such results.

After these earlier results were established it became clear that the LIL
should also hold under the classical moment conditions provided the random
variables take values in a Banach space of type 2. Such a result seemed
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most plausible due to parallel results for the CLT in spaces of type 2, and
was proved by Pisier in [14]. Pisier’s result is our next theorem and it
provides a generalization of Theorem D as well as those results for Banach
spaces with a smooth norm as all such spaces are of type 2. First, however,
recall that a Banach space is of type 2 if there exists an absolute constant A
such that

n
EIX,+X;+ ... + X' <4 D EIX,P
j=1

for all independent mean zero random variables X,, X,,..., X, and
all n>1.

THEOREM E (Pisier [14]). Let B denote a Banach space of type 2 and
assume that X,, X,,... are i.i.d. B-valued random variables such that
EX, =0 and E||X,|? < oco. Then (3.2) and (3.3) hold with K equal to the
unit ball of Hyy)).

4. A more complete answer to question (3). As was mentioned pre-
viously, the results regarding the LIL parallel those for the CLT for Banach
space valued random variables. In fact, Pisier proved in [15] that if {X,}
i8 an i.i.d. sequence of B-valued random variables such that EX, = 0,
E|X,|? < oo, and {8,/Vn: n>1} converges weakly to & mean zero
Gaussian measure, then {X,} satisfies the LIL, i.e. (3.2) and (3.3) hold.
Our next result yields this as a simple corollary.

If (M, d) is a metric space, {z,} a sequence of points in M,and A = M,
we will use the notation {z,} —-— A for both

limd(z,, A) =0 and C({z,}) =A4.

THEOREM 4.1 (Kuelbs [8]). Let X,, X,, ... be i.i.d. B-valued random
variables such that EX, = 0 and E||X,|’ < oco. If K is the unit ball of Hgx),
then the following conditions are equivalent:

(1) P{{Sn/an: n=1}—>— K} =1,

(ii) E)8,] = o(a,),

(iii) 8,/a, — 0 in probability.

An immediate corollary to Theorem 4.1 is the following result. Further-
more, it is easy to see that Theorems B, C, D, and E are immediate con-
sequences of Theorem 4.1.

COROLLARY 4.1 (Pisier [15]). Let X,, X,, ... be i.i.d. B-valued random

variables such that EX, = 0 and E|X,|* < oco. If {S,,/l/;: n > 1} is sto-
chastically bounded, then

S
P“-—a—n: n>1}+—>Kl =1,

J

where K is the unit ball of H g .
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5. An exponential moment with applications to some estimation prob-
lems. The techniques used to establish Theorem 4.1 can be applied to
calculate moments of random variables of the form

X+ Xyt . +X
(5.1) o — gup 2t Eat - ALl

n an
We know that if {X,} satisfies the LIL, then P(M < o) =1 and
X e +X
limsup X, + X3+ ... + X,

n aﬂ

is a finite constant. Hence one might guess that M should have exponential
moments whenever the individual X,’s have them. This is the case, and
we next describe a result in this area. After that we indicate some appli-
cations to two classical estimation problems in statistics.

However, for the applications we need some additional terminology.
Let B denote a real vector space, # a o-algebra of subsets of B, and |||
a semi-norm on B. We say that the triple (B, &, ||-||) is & linear meas-
urable space if

(i) addition and scalar multiplication are #-measurable operations
on B,

(ii) for all £> 0, {x € B: |z| <t} is #-measurable,

(iii) there exists a subset F of the %-measurable linear functionals
on B such that

(5.2) lzll = sup|f(»)] (ze€ B).
feF

Examples of linear measurable spaces are readily available in prob-
ability theory and, of course, include the situation where B is a real
separable Banach space, # denotes the Borel subsets of B, and |-| is the
norm on B. Another important example consists of B = D(R'), where
D(R') denotes the real-valued functions on R' which are right contin-
nous and have left-hand limits throughout R'. In this case, # consists
of the minimal o-algebra making the maps = — z(¢) (¢ € R') measurable,
and we can use any of the semi-norms

lzlly = sup|z(f)] (0<T < o0).
HI<T

That (D(R"), &, | ly) is actually a measurable linear space follows
easily from the fact that an element in D(R') is uniquely determined by its
values on any fixed countable dense subset of R' and then emphasizing
the ideas of [4].

A simplified version of the main theorem regarding exponential mo-
ments of random variables of the form given in (5.1) is the following:
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THEOREM 5.1 (Kuelbs [9]). Let (B, &, ||-||) be a linear measurable space
and assume that X,, X,,... are t.i.d. (B, %#)-valued random variables
such that

(a) Ef(X,) =0 for all feF,
(b) E(exp {1IX,I"}) < oo for some §> 0,
(¢) {8./Vn: n>1} is bounded in probability, where

S” = Z”1Xj'

Then there exists B, > 0 such that B < By tmplies

e

Furthermore, if (b) holds for all § > 0, then (5.3) also holds for all > 0,

Theorem 5.1 applies easily to two basic estimation problems in statis-
tics, and it is this that we turn to now.

The first problem is the use of the empirical distribution function
based on an i.i.d. sequence {X,} to estimate the common distribution
function of the X,’s.

That is, if X,, X,, ... are independent real-valued random variables
with common distribution function

n

(5.3) E (exp { p 8;11)

n

F(z) =P(X,<a) (zeR,
then the empirical distribution function is given by

n

LwalX
&, (@) = ZJZJ (@eR'n>1).

Of course, {€,(z): x € R', n>1} is a sequence of stochastic pro-
cesses indexed by R' and for each z € R' we have E(&,(z)) = F().
By the law of large numbers we thus have with probability one

lim|&,(z)—F(z)] =0 (zeR)),

n

and if F is continuous, it easy to see that

limsup |£,(z) —F(x)] = 0.

" zeRl

The importance of the empirical distribution is due to the fact that
it allows us to use observations of the i.i.d. sequence {X,} to estimate F.
A result of Chung [2] gives us a rate of convergence of &, to F' when F' is
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continuous, as it asserts that if
D, = sup|&,(2) —F(z)],
x
then

— n 1
Pl ]/—————D =—t =1.
I 1;:(1 2loglogn ~ " 2]

Hence, with probability one there is a finite function C(w) such that

1
D, () < 0(@1/%.

Of course, for practical purposes we would like C(w) uniformly bound-
ed, but this is not the case. However, C(w) has exponential moments.
.That is, write

n
M = ——— D,.
s:.lpl/Zloglogn "

Then we can assume that C < M, and if

‘i@, 0) = 1(—oo,z](Xj(w)) —F(z) (=21, —cc< o< ),

n ~ .
then it is known that Y {¥;/Vn: n>1} is stochastically bounded in
i=1

(D(R"), #, |I*llo)- Hence an easy application of Theorem 5.1 gives

THEOREM 5.2 (Kuelbs [9]). Let X,, X,, ... be independent real-valued
random variables with common distribution function F. Then, for all § > 0

E(exp {fM*}) < oo,

where M is defined as above.

Now we turn to our second application. Let X,, X,,... be an i.i.d.
sequence of real-valued variables with common probability density function
f(z) (x € R"). A problem of considerable practical importance and also of
theoretical interest is the estimation of f(x) by some statistic based,
of course, on the observed sequence {X,}. Such statistics are frequently
called empirical density functions.

There is a great deal of literature on this subject and we urge the
reader to examine [1], [12], [13], [17], and [18] for background as well
a8 for further references. The paper [1] and some recent work by Révész
in [16] deals with the problem of determining limit theorems for the empir-
ical density function, but here we only consider the more classical problem
of obtaining a uniform estimate for the density.
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The uniform estimates which we obtain are as good or, in most cases,
better than those available in the literature, and our method of proof also
yields the additional new fact that the estimates when centered at their
mean have exponential moments. Moreover, we can also handle the situ-
ation where there is some “noise” in the observations {X,}, but we present
only the most basic result here.

The estimates which we form to approximate f(x) follow those used
extensively in regard to this problem. That is, given & weight function K
and a sequence {k,} of positive numbers such that

limh, = 0

we write

n

1 z—X
K i RY).
s 2 (57) wem

Then {f,: »>1} is a sequence of stochastic processes (statistics)
on R' depending on the observed sequence {X,}, and we use them to esti-
mate the probability density function f(z).

If h(z) is any real-valued function on R', we define the bounded
Lipschitz norm of & to be

(5.4) Jal®) =

h(z)—x
llkllgr, = sup |h(z)|+ sup |k (x) —2(y)| .
zeR! ety |2—Yl

THEOREM 5.3 (Kuelbs [10]). Let {X,} be an i.i.d. sequence of R'-
valued random variables having a probability denmsity function f such that
Ifllgr, < oo. Let {f,} be the sequence of estimators defined by (5.4) and
assume that

(1) {h,} is a sequence of positive numbers converging to zero;

(2) the kernel K is a probability density function defined on R' such that
(a) K 48 right continuous and of bounded variation on R',

(b) f|ulK(u)du < oo.
Rl

Then
()  suplfu@)—Ef,(a) = 0 (l/ loglogn /hn);
zeR! n

(ll) M = supsup Ifu(w) —Efn(m)l VT()gTqu_n hn

n zeR!
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18 & random variable such that

E(exp{fM*}) < oo for all B> 0;

(iii) for any positive sequence {b,} such that b, —~ 0 as n — oo we have

. n
lim {0 (VW hbasup 1, (@)~ Bf(@l)| o,

D being any non-negative function on [0, oo) such that D(0) = 0,

im®(t) =0, and D(t)<exp{ft’} for t> 0 and some > 0;
40

(iv) for h, = n~Y* we have

sup |f,(2) —f ()| = O(n""*loglogn);

zeR!

(v) for @ as in (iii), and {h,} such that n~"*(loglogn)"?/h, — 0 as n - oo

we have
limE {& (sup |f,, () —f(2)])} = 0.
zeR1
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