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THE INVARIANCE PRINCIPLE FOR RANDOM VARIABLES
WITH VALUES IN LOCALLY COMPACT GROUPS

BY

H. BYCZKOWSKA (WROCLAW)

Let G be a locally compact group satisfying the second axiom of
countability. Let D, = Dg[0, 1] be the space of all functions f defined
on [0, 1] with values in G that are right-continuous and have left-hand
limits. D; endowed with the so-called Skorohod topology is a separable
topologically complete space. Let

o {EM:j=1,..,n;n =1,2,...}

be an infinitesimal triangular array of symmetric, G-valued, independent
and identically distributed random variables. Let us put

8P — XPXM ... X,

This (double) sequence defines a sequence of G-valued stochastic
processes {&,} with the sample paths in Dg:

£.(t) = 8-

Assume that £,(1) converges in distribution to a G-valued Gaussian
random variable. '

Is the sequence {£,} (considered as a sequence of random elements
with values in D) convergent in distribution to a stochastic process with
continuous sample paths?

The positive answer to this question was given by Donsker in [3]
for @ being the real line, and by Byczkowski in [2] for G being an LCA
group (satisfying the second axiom of countability).

"The aim of this paper® is to extend this result for non-Abelian locally
compact groups G. The proof of the invariance principle is based on methods
developed in [2]. However, we have to deal with the operator-valued
characteristic functions of probability measures and the situation becomes
more complicated.

* This paper is based on the author’s doctoral thesis written under the super-
vision of Professor C. Ryll-Nardzewski.
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At the end of the paper we consider G-valued homogeneous stochastic
processes with independent increments, having continuous sample paths,
and we prove that every such process is Gaussian.

1. Preliminaries. Throughout the paper, G will always denote a locally
compact group. We will assume that G satisfies the second axiom of
countability, unless otherwise stated.

Let ¢ be a left-invariant metric generating the topology of @G. It is
well known (and not hard to verify) that ¢ is complete.

Let ||-|| denote the distance from the identity e of G: |z|| = o(2, 6).

By Dy = D4[0, 1] we will denote the space of all functions f defined
on [0, 1] with values in @ that are right-continuous and have left-hand
limits.

Let A denote the class of all strictly increasing, continuous mappings
of [0, 1] onto itself taking 0 onto 0. For f and g in D, define d(f, g) to
be the infimum of those positive ¢ for which in A there exists a 4 such that

sup|At—t|<e and sup|(f(?) g (M) <e.
¢ t

The space Dy is a separable, topologically complete metric space
with the topology generated by the metric d (the so-called S8korohod topo-
logy).

A mapping ¢ defined on a probability space (2, S, P) with values
in Dy is called a random element if it is measurable with respect to & and
the Borel o-algebra in Dj,.

¢ is arandom element (with values in D) if and only if &(¢) is a random
variable with values in G (i.e., £(¢) is measurable with respect to € and the
Borel o-algebra in @).

For further information concerning the space D; as well as charac-
terizations of the uniform tightness of families of probability measures
on Dg, the reader is referred to [1] (the arguments used there apply to
our general situation without almost any change).

Now, let us remind some basic facts about representations of locally
compact groups and about the Fourier transform of probability measures.

Let U be a unitary representation of a locally compact group G,
that is, a homomorphism g - U(g) of & into the group of unitary opera-
tors on certain Hilbert space H. The representation U is called (weakly)
continuous if the mapping

9—><U(g), ¥>

is continuous for every z,y € H. A subspace L < H is called an invariant
subspace of U if UL < L, that is, U(g)x € L for every g € G and every « € L.
We say that U is érreductble if there exists no proper invariant subspace
of U.
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Two unitary representations U and V of G are called equivalent
if there exists a linear isometry T such that

U, I =TV, forallged.

Let %' (@) be the set of all equivalence classes of continuous, irreducible
unitary representations of G¢. By # (@) we will denote a fixed selector of
' (Q).

Now, if x4 is a probability measure on G (that is, a positive Borel
measure satisfying u(G) = 1) we can define the Fourier transform u
by the formula

((D)w, gy = [<U@g)e,y>p(dg), Ue¥(@),s,yeH.
G

It is well known that the mapping u — u is one-to-one and that
(py*ps)” = u, g (see [6]). Moreover, u(U) is a self-adjoint operator for
every U e (@) if and only if u is symmetric, that is, if u(E) = u(E™")
for every Borel E c @.

It is also known that if u, is weakly convergent to u, then

(U)o — u(U)x for every z € H and every U e %(Q).
Conversely, if
{aa (U, y> - (u(U)z,y) for every o,y € H and every U e (@),

then u, converges weakly to u.

Now, a family (), is called a- semigroup of probability measures
if uep, = py,, for every t, 8 > 0; it is called a continuous semigroup if the
mapping ¢ — y is continuous. (), is called e-continuous if

limy, =e
{0+
(the point measure concentrated at the identity of @). It is known [11]

that a semigroup (u);-, is continuous if and only if lim u, exists. If this
>0+

limit exists, it is the identity of the semigroup (hence idempotent).
A probability measure u will be called embeddable if there exists
a continuous semigroup (u);-, of probability measures such that u, = u.
A probability measure u is called Gaussian if it is embeddable into
an e-confinuous semigroup (u);., of probability measures having the

property
1
(1) lim— 4, (G\V) =0
tjo ¢t

for every open neighbourhood V of the identity of @ (see Section 4 in [7]).
More precisely, we will call 4 a Gaussian measure with embedding semi-

group (p)i>o-
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For an equivalent definition in terms of Lévy-Khintchine represen-
tation, see [6] and [10].

2. The invariance principle. Let {8{™: k =1,...,n; 7 =1,2,...}
be a triangular array of G-valued random variables. Let »*) denote the
distribution of S{.

LEMMA 1. The following conditions are equivalent:

(i) Himlim maxP{||8{™| > 8} = 0 for every &> 0.
hlO0n—so0 k<nh

(ii) limlim max a(¥™, €) = 0, where o i3 a metric generating the topology
hlOon—so0 k<nh
of weak convergence of probability measures on @.

(i) limlimmax [»{™(U)z —a|| = 0 for every « ¢ H and every U € %(G).
hlo0n—+o0 k<nh

Proof. Observe that condition (i) can be stated equivalently:

i) V (3{0) V (m100) V (0 < &y < myhy) SL’;J)—>0 in probability .

) {ng}
Since the convergence m probablhty to a constant is cquivalent to

the convergence in distribution to a point measure, conditions (i)’ and (ii)
are equivalent.

Next, it is obvious that (ii) implies (iii).

Finally, assume that (iii) is satisfied. Let {&;}, {n;} and {k;} have
the properties as in (i)’. Then » gf’(U)w —x for every # ¢ H and every
U € %(@). In virtue of the properties of the Fourier transform we infer
that v},';f’ converges weakly to e, which is equivalent to (ii).

The next lemma is taken from [2].

LEMMA 2. Let {X™:j =1,...,4; n =1,2,...} be a triangular
array of G-valued, independent and tdentically distributed random variables.
Let 8 = XMX™ ... X™. Suppose that

(a) S,‘,',‘)] converges weakly for t € F, where F ts a dense subset of [0, 1]
containing 1;

(b) for each ¢ > 0 and a certain sequence 8,,0< 8,<1, é,—0,

1 —
'6—llm P{Ilﬂfﬂoklll >8>0 as k- oo;

(6) for each € > O there exists h > 0 such that

LimmaxP{|8™ || > e} < 1.
n lgranh
Let &,(t) = 8. Then the sequence of random elements &, converges

weakly to a certain random element of Dy with continuous sample paths.

Let a probability measure 4 be embedded into a continuous semigroup
(#)i>0 Of probability measures. We prove that there exists at most one
symmetric semigroup (g),-, with the properties above. This is an immediate
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consequence of the following well-known lemma, applied to the Fourier
transforms of (4;);~0:

LeMMA 3. Let (T));>, be a strongly continuous semigroup of self-adjoint
operators on a Hilbert space. Then T, > 0 for every t > 0 and

[ 2m(ax),
o(Ty)
where E is the spectral measure of T, and A}, t > 0, i8 the real power of A > 0
COROLLARY 1. Let u be a symmetric probability measure on G. There
exists alt most one continuous semigroup (w);~o of symmetric probability
measures such that u, = u.

Let T be a self-adjoint bounded operator on a Hilbert space H. Let f
be a bounded, Borel measurable function defined on the spectrum of 7.
By f(T') we denote the operator defined by the formula

f(I),= [£(HE(da),

where F is the spectral measure of T (see [4], X, Section 2). If T is, in
addition, non-negative, then by I (a > 0) we will denote the operator f(T),
where f(4) = A (1> 0) is the real power of A.

The next lemma is a consequence of Theorem 2 in [4], X, Section 8.

LEMMA 4. Let T, and T be bounded operators on a Hilbert space H. Assume
that T, i3 mon-negative and that T, converges strongly to T. Let a, — a,
a,, a > 0. Then T," converges strongly to T°.

LeMMA . Let 8, and T be bounded operators on a Hilbert space. Assume
that 8, are self-adjoint, |IS,||<1, 8, converges strongly to I (the identity
operator) and 8} converges strongly to T. Then T > 0 (T is non-negative)
and ¢f k,[n —t for t > 0 and some integers k,, then S " converges strongly
to T

Proof. Let k, =k, +s,, where k, is an even integer and &, = 0
or s,=1. Then 8. = §:»&’™ and

Sk; _I S3) “’“ 1y if » is even,
" (8+1)*n if » is odd.

Let us put
T, S if n is even,
- 8"“ if » is odd.
By assumption, T, is strongly convergent to 7'. Since 7, are non-

negative, T is also non-negative. It follows from Lemma 4 that 8‘:‘." = T:"’"
converges strongly to T%. Since 8, converges strongly to I, we infer that

= Sﬁ" 8," converges strongly to T, which completes the proof.
n

§ — Colloquium Mathematicum XLV.1
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THEOREM 1. Let {X{M: k =1,...,m; n =1,2,...} be an infini-
tesimal triangular array of G-valued, symmetric, independent and identi-
cally distributed random variables. Let v, be the distribution of X{™. Assume
that v;® converges weakly to u. Then u(U) = 0 for every U € %(G) and v,;™)
converges weakly to u,, where (1), 18 a continuous semigroup of probability
measures such that p,(U) = [ E(dA), and E is the spectral measure of u(U).

Proof. Let U € #(@). Let us write 8, = %,(U) and T = u(U). Since
the considered array is symmetric and infinitesimal, 8, = 8; and 8,
converges strongly to I. By assumption, 8, converges strongly to 7.
Let k, = [nt] for ¢t > 0. Since &, /n — t, we infer from Lemma 5 that 7' > 0
and

S* converges strongly to T = f A E(dr),
o(T)
where F is the spectral measure of 7. Clearly, T"T* = T*** for t, s > 0.

Next, we show that {#;} is weakly compact for every fixed ¢ > 0.
To show this, let us write [#t] = 2m,, +¢,, where ¢, = 0 or ¢, = 1. Since
v x v, " ™) converges weakly to u, we infer from Theorem 2.1, III,
in [8] that there exists {g,}, g, € G, such that {»;™sxg,} is weakly compact.
Then {( —g,)*»s™s} is also weakly compact, hence so is

?:[M] — (’,;m,‘ *g,) ‘(( —4,) .v:"‘n) *y:‘n .

Since we have just shown that (v,(U))'"™! is strongly convergent
to u,(U), (@) is the Fourier transform of a probability measure g, and
byep, = ., for every ¢, 8 > 0. This completes the proof of the theorem.

Remark 1. Let 4 be embedded into a continuous semigroup of
probability measures (g),~,. Then (), is e-continuous if and only if
4,(U)z converges to « for every U € #(@) and every « € H.

If u4,(U) = [#E(dA) for t> 0, where E is concentrated on [0, 1],
then the condition above is satisfied if and only if for every U e #(Q@)
the spectral measure ¥ of u(U) has no atom at 0. Hence we have

COROLLARY 2. The following conditions are equivalent:

(i) u t8 embeddabdle into an e-continuous symmetric semigroup of prob-
ability measures.

(ii) u# has mo mon-trivial idempotent factors and there exists an infini-
testmal triangular array of symmetric, independent and identically distrib-
uted random variables {X™: k =1,...,m; » =1,2,...} such that 8™
converges in distribution to u.

LEMMA 6. Let T, and T be bounded non-negative operators on a Hilbert
space. Assume that T, < I and that T, converges strongly to T. Let E be the
spectral measure of T. If E({0}) = 0, then

limﬁﬁsup IThe—z|| = 0.
hi0 n a<h
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Proof. Let 0 < a< h. Then TR T: and I—T;<I—T!. Hence
(I-T),z) < {(I—-TYa, 2).

Since for normal operator A

4| = sup<{4z, z),
lzli<1
we obtain

sup |T30 —al = |Tao—al.
ag

Since, by assumption, T, converges strongly to T, we have

limsup | T3 — 2| = |T*z —al.
n a<h

Moreover, since E({0}) =0, we infer that T™ converges strongly

to I as h - 0, hence
limlimsup |T2x —2|| = 0,
Al0 n a<h

which completes the proof.

LEMMA 7. Let 8, and T be bounded operators on a Hilbert space. Assume
that |18,I1<1, 8} = 8,, S, converges strongly to I and that S converges
strongly to T'. Let E be the spectral measure of T. If E({0}) = 0, then

limlim max ||8%# — || = 0.
hl0 n k<nh

Proof. Let 2 <1 be a positive real and let k, <nh be an integer.
Then

g = Shosln = T,

where k,, s, and T, have the same meanings as in the proof of Lemma 5
and

_ kpIn if » is even,
® |k, /(n+1) if n is odd.

Observe ﬁhat
I8, @ — | < | Tor e — ol + |20 8P e — T2 ol < | Tt e — || + |18, @ — .

T, are non-negative and T, < I, hence, in virtue of Lemma 6, we
obtain the conclusion.

LEMMA 8. Let ()4, be an e-continuous semigroup of symmetric prob-
ability measures on G and let {X{™} be an infinitesimal triangular array
of G-valued, symmetric, independent and identically distributed ramdom
variables. Let v, be the distribution of XM, j = 1,2, ..., n. Assume that v;*
converges weakly to u,. Then for every x € H and every U € % (@) we have

limlimmax |, (U)¥z —z|| = 0.
Al0 n k<nh
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Proof. Applying Lemma 7 together with Remark 1 to 8, = 7,(U)
and T = u,(U) we obtain the conclusion.

THEOREM 2. Let u be a symmelric Gaussian measure on G with an
e-continuous symmetric embedding semigroup (w);.. Let {XM: k =1, ...
ceey; m=1,2,...} be an infinitesimal triangular array of symmetric,
independent and identically distributed G-valued random variables. Assume
that 8 = XMXM™ ... X™ converges in distribution to u. Let &, (¢) = S{R); .
Then the sequence of Dg-valued random elements &, converges in distribution
to a random element W with continuous sample paths.

Proof. Let », be the distribution of X{, k¥ =1, ..., n. From The-
orem 1 we infer that »;™! converges weakly to v, where (¥,);, is a contin-
uous semigroup of probability measures such that »,(U) = JAE(dA) (E is
the spectral measure of u(U)). By Oorollary 1 we obtain » = u,. Thus
condition (a) of Lemma 2 is satisfied. Since ux is a Gaussian measure with
an embedding semigroup (y), we obtain (1) for every open neighbourhood ¥V
of the identity of @. Since »,™! converges weakly to u,, we obtain

HmP {841 > &} < s {g: llgll > e}

Hence and from (1) we infer that condition (b) of Lemma 2 is
satisfied. Finally, by Lemmas 1 and 8, condition (¢) of Lemma 2 also
holds, which completes the proof.

Remark 2. It is easy to observe that Theorem 2 ensures the exist-
ence of a homogeneous stochastic process W with the continuous sample
paths and one-dimensional distributions g, 0 <t< 1. The process W
has the independent increments; this follows from the fact that for every
system 0 <, <t <...<t <1 there exists an n, such that for » > n,
the increments

SRk (S -oey St SR
consist of the different independent random variables X{™.
In the next remark, which is essentially due to Professor C. Ryll-

Nardzewski, we show that Theorem 2 remains valid if @ is only metrizable,
if we restrict ourselves to tight probability measures.

Remark 3. (i) Let G be a metrizable locally compact group, non-
necessarily separable. A measurable mapping of a probability space
(82, S, P) into (@G, #) (# is the Borel o-algebra in @) will be called a random
element if its distribution is tight. It is known that if X and Y are random
variables defined on a complete probability space, then XY is also a random
variable (see [9]).

(ii) Every separable subset of G is contained in an open (hence closed)
separable subgroup G, < @G.
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(iii) If x is a tight measure, then its support is separable, hence, in
virtue of (ii), is contained in an open separable subgroup G, < G.

(iv) Let M be a separable subset in the space of all tight distributions
on @G (endowed with the weak topology). Then there exists an open sepa-
rable subgroup G, < @ such that C(u) (the support of u) is contained in &,
for every u € M. In particular, if ()., i8 2 continuous semigroup of
tight probability measures, then ()., i8 a separable family; hence,
there exists an open separable subgroup G, < @G such that C(y) = @,
for every t > 0.

(v) The space Dy, defined as.in the Preliminaries (for non-neces-
sarily separable @), is metric. Every separable subset of D; is contained
in Dg , where G, is an open separable subgroup of G.

(vi) A measurable mapping defined on a probability space (2, S, P)
into a space D, with the Borel o-algebra is called a random element (with
values in Dy) if its distribution is tight. It is easy to see that if X,, X,, ...
...y X, is a finite family of random variables defined on a complete proba-
bility space, then the mapping

Eu(t) = X, X, ... Xy
defines a random element with values in Dj.

(vii) Countable families of random elements with values in D, are
concentrated on Dy , where G, is an open separable subgroup of G. Observe
that Dy is a closed subspace of Dg.

(viii) Using (i)-(vii) we see that Theorem 2 remains valid without
assumption of separability of G whenever the probability space, on which
considered random variables (elements) are defined, is complete.

COROLLARY 3. Let u be a Gaussian measure with a continuous symmetrio
embedding semigroup (u;);~,. Let {£(t): t€[0,1]} be a G-valued homoge-
neous and separable (in the sense of Doob) stochastic prooess with independent
increments. Assume that &(t) has the distribution yu, for t € [0,1]). Then &
has the continuous sample paths with probability one whenever (2,8, P)
18 @ compleie measure space.

Proof. This follows from Theorem 9.2 in [1] and from the existence
of a homogeneous random element W with independent increments and
continuous sample paths, which is guaranteed by Theorem 2.

COROLLARY 4. Let {£(t): t €[0,1]} be a homogeneous G-valued sto-
chastic process with independent imcrements and continuous sample paths.
Then & i8 Gaussian.

Proof. Let u, be the distribution of &(¢). Using Lemma 2 from [2]
we obtain

lim —l—p, (@G\V) =0

Mwn
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for every open neighbourhood V of the identity of G and for every se-
quence ¢, — 0. Hence u, (and also every g,) is a Gaussian measure with
an embedding semigroup (i), - '

Acknowledgment. The author is indebted to Professor C. Ryll-
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