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I. Stationary languages. An alphabet G is a finite set of symbols. A
string C = 4y ...ix of length k is called a k-gram. Let G* denote the set of
k-grams. Clearly if G contains n symbols, |G| = n, then |G*| = |G|* = n*.

If to each k-gram we assign a probability:

pr,(C) >0, for each C € G, Z pri(C) =1,
CeG*
and if the pr; are consistent on the right and on the left:

Z PTiyr (1. . tktkgr) = Pr(dy ... ix),
(1) o -
Zprkn(%l'z ootkg1) = Pri(i2 .. o tkt1),
i

then we say that the pr, for £ = 1 to oo define a stationary language over G.

In what follows we shall usually drop the subscript and write pr instead
of pr,.

Given a k-gram C the Shannon information of the k-gram is

I(C) = Ix(C) = log 1/ pr(C),
provided pr(C) > 0. The mean of I,
Hy = Z pr(C)I(C)’
CeGH

is called the Shannon entropy.

It can be shown that the one step entropy defined as

H = lim H;/k
k—oco

exists for all stationary languages.
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Shannon’s theory of information is concerned with those stationary lan-
guages for which the random variable I, /k congregates about its approxi-
mate mean, H, as k increases. More precisely,

(2) given € > 0 there is a positive integer K such that for all k¥ > K,
)" pri(C) < ¢, where the sum is taken over all k-grams, C, which do
not satisfy |I(C)/k — H| < e.

An n x n matrix P = (p;;) such that p;; > 0, for all ¢ and j, and
Y ; Pij = 1, for each i, is called a stochastic matriz.

A probability vector, @ = (q1,...,4n), is stable under P if QP = Q.

Given such a P and @ a stationary language is called a Markov chain if

Pri(i1 - - k) = @iy PiyiyPigis - - - Pig_yin -

In this paper we shall be concerned with the information, I), on a Markov
chain formed by an aperiodic stochastic matrix, that is, a stochastic ma-
trix, P, some power of which has all its coefficients strictly positive.

In his famous paper of 1948 [4], Shannon proved (2) for such a language
using the law of large numbers. We intend to sharpen his result first by

computing the mean and variance of I and then by showing that, for large &,
I}, is approximately normally distributed.

II. Matrices with positive coefficients. The Perron-Frobenius the-
orem for a square matrix, A, with strictly positive coefficients states that
there exists a positive eigenvalue, A, called the principal eigenvalue, of alge-
braic multiplicity one, and left and right eigenvectors L and R with strictly
positive coefficients:

LA =)L, AR = AR.

(For a proof see [2], p. 285.)
We introduce the oscillation of A:

W= a"/a",

where a* and a** denote the minimum and maximum elements of 4, 1 <
w < 00. If Aisn x n and £** the maximum element of the row vector
L =(4,...,£,) and £* the minimum, from AL = LA we obtain

(3) A < a** Zt,-, M* > a* Zl;,
so that the oscillation of L,
ltt/et S a,'”"/a‘ = w.

In what follows, to fix ideas we let A = 1. Define the L-norm on column
vectors by

Xl =) tlal-
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Y = AX,y; = Ej ai;Z;, then
”Y"L = Zeilyil < Zlizaijhj' = Z |27j| nga,‘j
i : F j i .
=) Izl = XL,
j

so that ||[AX||L < ||X||L; moreover, in the special case that the coefficients
of X are nonnegative, we have equality at each step above so that ||[AX||, =

XL
Let Wy be the subspace of all those column vectors such that LX = 0.

(4) THEOREM. A is strictly contracting over Wi, in the L-norm with
contracting factor p <1 - 1/w.

Proof. If LX = 0 then L(AX) = LX = 0so that A maps W, into W.
Let s = mina;;/¢;. Then for Y = AX,

Y, = z 2(7_) l,-a:,--{-zj:sl,-zj
-5 (-
¥l =S el < 63 (52-¢) tlas
= St Tt ("A_s)

But ). fi(aij/t; —s) = 1—8Y €; = p, so that ||Y]L < p||X||L. Clearly
p < 1. By (3) and the definition of s,

L !
8Z£ - [t- zl' - a-:zz ;’
ie.p<l-1jw. =

Let X be any column vector with non-negative coefficients such that
IX|lz = ||R||L. We wish to show that the sequence A*X approaches R
geometrically. We have

A*X - R = A¥(X - R),

but L(X — R) = LX — LR = || X||L - ||R|| = 0 so that X — R € W.
Therefore

14*X — Rl < p*[IX — Rlle < p*(I1X I + IIRIIL) = 20*]| Rl
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Now choose R and L so that
IRl = LR =1.

(5) THEOREM. The powers of A tend to the rank one matriz, RL, which

is the product of the column vector R with the row vector L. Moreover, if
af-;) is the (i,j)th element of A* then

laly) — rit;| < 2p%1.

Proof. Let A; denote the jth column of A. Then ||4;||L = LA{ ={;,
the jth component of L. Thus for the jth column of A*¥ which is A¥~14;,
we obtain

|A*F=1A; - £;R||L < 2% || R||L = 2p%71¢;,
|a{¥) — £;rile; < ||A*1A; - 4;R||L < 2p%7¢;. w

Apply this to square stochastic matrices with positive coefficients. In this
case there is a unique row probability vector ¢ which is stable. We choose

the right eigenvector to be the column vector 1 all of whose coefficients are 1.
Then QP = Q, P1 =1, and @1 = 1. We find that

(6) P* tends to the matrix 1Q and the (i, j)th entry of P* is within
2051 of g;.

Finally, we consider matrices A(t) whose coefficients are positive analytic
functions on the real line. The principal eigenvalue A(?) is a function. The
eigenpolynomial,

#(t,z) = det(zl — A(t)) = 2" + a(t)z" 1 +...,

is a polynomial with analytic coefficients and with (9/9z)¢(t,z) evaluated
at £ = A(t) different from zero (since A(t) is an eigenvalue of algebraic
multiplicity one). By the implicit function theorem, A(t) is analytic with

)
Z t,
A(t) =,-M at z = A(t).
ﬁqs(ts z )
A principal right eigenvector, R(t), is a non-trivial solution of the matrix
equation
(A) - AMt)H)X =0

which is a system of n equations in n unknowns with analytic coefficients.
But analytic functions belong to the field of meromorphic functions. Solving
by Gauss—Jordan elimination yields a non-trivial solution X = R(t) whose

components are meromorphic functions which for each value of ¢ are positive
(and finite) and so must be analytic.
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III. The mean and variance of information on a Markov chain.
Consider a Markov chain whose stochastic matrix, P = (p;;), has strictly
positive elements. We first calculate and write in matrix form the mean of
the random variable I on the k-grams, G*:

He= ) pr(C)Ik(C)=}_pr(C)logl/P(C)

CeG*
= Z . E pr(i1...1x)(log1/qi, +logl/pi i, + ... +1log1/pi_.it)

(we break the sum into k parts and on each part use the consistency rela-
tions (1) and then write the terms as matrix products)

= EQi logl/gi + (k—1) Z Z‘Ii(Pij log 1/pi;)
i LI

= (Qlog1/@Q)1 + (k- 1)Q(Plog1/P)1

where (Qlog1/Q) is the row vector whose ith component is ¢;log1/g;,
(Plog1/P) is the matrix whose (,j)th component is p;;log1/p;; and 1
is the column vector all of whose components are 1. We obtain the well
known theorem of Shannon:

(7) If H = Q(Plogl/P)1 then limi_o Hr/k = H; moreover, there
exists a constant B such that |H;/k — H| < B/k.

In a similar way we compute the second moment Vj:

Vi= 3 pr(C)I(C)
CeG*k

= .- )_pr(ir...ix)(log1/gi, +log1/pii; + ...+ log 1/pi, i, )?

(expand the square term into k? terms on which we use (1) whenever possible
and then interpret the sums as matrix multiplications)

k-2
~(Qlog? 1/Q)1 +2 Y (Qlog1/Q)P*(Plog1/P)1
=0

k-3

+2Y (k—£—2)Q(Plog1/P)PY(Plog1/P)1 + (k — 1)Q(Plog? 1/P)1.
£=0

If we denote by S? the variance of the random variable I,

St =) pr(C)IK(C) - Hi)* = Vi — H}
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= (Qlog’ 1/Q)1 - [(Qlog1/Q)1]’
k-2
+2) (Qlog1/Q)[P - 1Q](Plog1/P)1
=0

k-3
+2) (k—£-2)Q(Plog1/P)[P' - 1Q](Plog1/P)1
£=0
+ (k -~ 1){Q(Plog? 1/P)1 - [Q(Plog1/P)1}*}.
By (6) the difference of the (i,j)th component of P’ and 1Q is less than
2pt~1, p < 1, so that the series

(8) E =) (Qlog1/Q)[P‘ - 1Q)(Plogl/P)1

=0

is dominated by a geometric series and so converges absolutely. (For £ > 1,
P! —1Q = (P —1Q)* so that using I + 352, (P -1Q)= (I - P+ 1Q)!
one could write E in a form not using infinite series.) The expression

k-3
1
Ep= ) (k—£-2)(Qlog1/Q)[P‘ - 1Q](Plog1/P)1
£=0
is a modified (C,1) sum of the series for E and so tends to E as k tends
to 0o. Moreover, the terms of the series for E are dominated by a convergent

geometric series so that it is easily shown that there is a constant, B, such
that |Ex — E| < B/k. Thus we have proved:

(9) THEOREM. Let

57 =23 (Qlog1/Q)[P' - 1Q](Plog 1/P)1

{=0
+ Q(Plog? 1/P)1 - [Q(Plog1/P)1]%.
Then
lim SZ/k = §%
k—o0
moreover, there is a constant, B, such that
|S%/k — §?| < BJk.
Chebyshev’s inequality may be used to give a proof of Shannon’s theo-
rem (2).
The fact that Hj and S are approximately equal to kH and kS? suggests
an underlying central limit theorem which we now proceed to prove. A

central limit theorem in a more general setting which holds for a certain
class of strictly stationary strongly mixing sequences has been proved by
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Ibragimov [2]. The interest of our result lies in the elementary natur: of the
proof as well as in precise formulas such as those 6f Theorem (9).

IV. Information is an approximately normal random variable.
We form the moment generating function (the Laplace transform) of the
random variable Ij:

¢k(i)= Z pl‘(C)etI"(C)

CeGH
=Y pr(C)exp(tlog1/ pr(C)) = 3 pr(C)*~*
= Z .. .E q}l_tp},-,-: .. .P},,-_t,i, .
il ik

Writing the multiple sum above in the form of matrix multiplication we
obtain

$i(t) = Q1P 1

where Q!~* is the row vector whose ith component is ¢! =%, P1~* the matrix
whose (¢, j)th component is P,-lj“ and 1 the column vector all of whose
components are 1.

P!~ is a matrix with positive analytic coefficients; let A(t) be its prin-
cipal eigenvalue. A(?) is an analytic function for each ¢, in particular it is
analytic at ¢t = 0, therefore
1
2
Let L(t) be a left row eigenvector and R(t) a right column eigenvector for
the matrix P!~* with eigenvalue A(¢). In particular, we can choose L(t)
and R(t) with positive analytic coefficients and such that L(t)R(t) = 1.
Observe L(0) = @ and R(0) = 1. We have

At)=14at+ =bt? + O(t®) as t— 0.

1-t\ k-1
-

Let h(t) = Q'*R(t)L(t)1. Then h(t) is an analytic function so that in a
neighborhood of t = 0

h(t)=1+0(t) ast— oo.

If w, the ratio of the largest element of P = (p;;) to the smallest, is the
oscillation of P, then the oscillation of P!~ is w!~* so that in a neighborhood
of t = 0, say |t| < 1, the oscillation of P'~* is uniformly bounded by w?.
Thus for |t| < 1 the matrix P(t)/A(t) tends uniformly to the matrix R(t)L(t)
and indeed the individual terms of the matrix difference (P1=t/A(t))*~1 —
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R(t)L(t) are dominated by 2p*~2 where p < 1 — 1/w?. Thus for |¢| < 1,
éx (1)
Mo)F1

Multiply the numerator and denominator of the above fraction by e~*a¢
and replace ¢ by t/vk. Since given any large number é eventually k > §?
we find that given § > 0, for [t| < &

[e=at/VEX(t/Vk)|k-1e-at/VE
uniformly as k tends to co. But the numerator of the above fraction,
ok(t) = e‘ﬁ"‘cﬁk(t/ﬁ),

is easily recognized to be the moment generating function of the random
variable which to a k-gram C assigns the value (It(C) — ka)/vk. But

h(t/Vk) and e~/ vk tend uniformly to 1 for |t| < § and
e~ tA() = 1+ -;-(b — a2 4+ 0(#)
so that from (10) it follows that

— h(t) = 0 uniformly as k — oo.

h(t/VE) — 0

k-1
2 _ 2
Jim (e=2t/VEX(t/VE))F! = lim(l + -;- b " Le2yo /k3/2))

— e(b—a’)t2/2.

Thus o4(t) tends uniformly for |t] < 6 to e(®=*")¥/2 which we recognize
as the moment generating function of a normal distribution of mean 0 and
variance b — a2.

Combining the results of this section with those of Section III we see
that

dr(t) =1+ Hit + %thz + higher order terms

so that equating coefficients in the limit we know precisely the first terms
of A(t),
AMt)=1+Ht+ %(S2 + H?) + higher order terms.

Thus using a well known theorem in probability theory (see [1], Theo-
rem 6.2.24, p. 309) we have proved:
(11) THEOREM. The distribution function of the random variable
(Ir — kH)/VES

over a Markov chain whose transition matriz has positive entries tends to
the distribution function of a normal distribution of mean 0 and variance 1.
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Actually a bit more is true: If A is a matrix with non-negative coefficients
such that some power A™ has positive coefficients and if p is the contracting
factor of A™ acting on Wy, then letting o = p!/™ and B = 2/p the reader
will easily verify that the conclusion of Theorem (5) goes through except
that the final formula is replaced by

|af-;-°) - T.'e,'l S Bdk.

The above theory now goes through for all aperiodic Markov chains mutatis
mutandis.

We close with a simple example of stationary language for which the
theory fails. Let G = {1,2}. If the k-gram C does not consist entirely of a
string of 1’s we let pr;(C) = 1/2¥+1 and pr,(11...1) = 1/241/2%*+!, Then
Ii(11...1) ~ log2, while for the other k-grams, C, I;(C) = (k + 1)log2.
Thus

Ix(11...1 1
%zo, prk(ll...l)z§
while for the other k-grams
I (C) _ 1
: ~ log 2, Zpr(C) N o

Property (2) fails and indeed in this case we easily verify that S? is O(k?)
rather than O(k).
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