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1. Introduction and summary. The existence of a free inverse semigroup on
a set X was first established by Vagner [8] by an argument reminiscent of the
construction of a free group on X. A concrete construction was first offered by
Scheiblich [6]. This was followed by various other constructions due to Munn
[3], Preston [4] and Schein [7]. A characterization of a free semilattice of’
groups was announced by Liber [1].

It was noticed by McAlister and McFadden [2] that a free inverse
semigroup can be represented as a P-semigroup introduced by McAlister. It
has also been observed by several authors that a free inverse semigroup on
X with an identity adjoined is a free inverse monoid on X, so only the latter
may be considered.

We provide here a simple direct proof of the fact that a free inverse
monoid on X can be represented in a form similar to that of a P-semigroup by
exhibiting a homomorphism of (X U X’)* onto this semigroup constructed by
means of a semilattice and a free group on X. Even though the end result is
not new, our proof makes the interplay of the words on X and the pairs in this
representation explicit, rendering the representation more transparent. Hence
we deduce the construction of a free semilattice (which is well known), and the
free semilattice of groups due to Liber. As a further application, we furnish the
Munn representation of the elements of a free inverse semigroup by word trees
with a multiplication in terms of graphs making this representation an
isomorphism. This solves a problem posed by Reilly [5].

2. The construction. Let X be a fixed nonempty set. A free inverse semigroup
on X is a pair (Fy, @), where Fy is an inverse semigroup, ¢ is an injection of
X into F such that, for every inverse semigroup S and a function ¥ of X into S,
there exists a unique homomorphism ¥ from F, into S making the diagram

X L4 > F,

commutative.
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As we mentioned above, for the purposes of our discussion, we may
restrict our attention to monoids. Note that a monoid is a semigroup with an
identity element and that a homomorphism of monoids S and T maps the
identity of S onto the identity of T. In an obvious way, we may speak of a free
inverse monoid on X.

Now let ¢ be a bijection of the set X onto a set X’ disjoint from X. Let
Z = (X u X')* be the set of all words on the set X U X', including the empty
word, here denoted by 1, under juxtaposition as multiplication (the free monoid
on Xu X’). For any xeXu X’ let

-1 xp if xeX,
X ©= -1 ; -1

xp ' if xeX™',
and for x,x,...x,€Z

1,.-1

(X1 X5... %) P =xr o xgtxr

It is clear that w—w™! is an involution (antiautomorphism whose square
is the identity) of Z, and it was noted in [7] that (Z, ~') is a free involuted
monoid on X. Note that a homomorphism of involuted semigroups must
preserve the involution. Here and above, we call the monoid alone a free object
since the injection from X into Z is obvious. We will do this also for some other
free monoids.

From now on, we write Z for the monoid with involution just constructed.
Let ¢ be the congruence on Z - generated by the relation

-1

{(uu " u, u) | ueZ} U {(uu" ‘oo™, v luu"1) | u, ve Z}.

Then (Z/o, 0¥ |x) is a free inverse monoid on X this is the original description
of Vagner [8] (for a proof see [5]). Call ¢ the Vagner congruence on Z.

For any we Z, let r(w) denote the reduced word of w, which is obtained by
successive omission of all occurrences of subwords of w of the form xx~! with
xeXuX'. The set Gy of all reduced words with the multiplication
w-u = r(wu) is a free group on X. Again the identity is the empty word, which
will be denoted by 1. '

For any w =x,x,...x,€Z let

w={1,x;, X X3, .0, X1 X5...%,}

A subset 4 of Gy is closed if we A implies w = A. Let E denote the set of all
finite closed subsets of G,. Finally, put

Iy ={(4, 99 Ex Gx| ge A}

with the multiplication (A, g)(B, h) = (A U gB, gh), where both gB and gh are
products computed in Gy.

It will follow from the theorem below that I, is a monoid. One verifies
easily that (g~'4, g™') is an inverse of (4, g), and that idempotents of I,
commute. Hence I, is an inverse semigroup.
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The elements of w are the left factors of w. The reduced left factors of
w form the set )

if(w) = {1, r(x,), r(x;x5)s ..op F(X1 X5... X,)}
THEOREM 1. The function
Y: wo(rlf(w), r(w)) (weZ)

is an (involution preserving) homomorphism of Z onto I, which induces the
Vagner congruence on Z.

Proof. In order to verify that Y maps Z into I,, it suffices to show that,
forw=x,x,...x,€Z, rlf(w) is closed. Hence let uerlf(w). Then u = r(x, x,...x;)
for some 1 < i< n,s0u=xjx;...x; forsomel<j <...<j,<i Forany
1 <k<m we have

Xjy Xjy oo Xj = F(XyX5...x5)€rlf(w).

Hence rif(w) is closed.
For w=x,x,...x,, and u=y,y,...y, we obtain

(W) (wy) = (rlf(w), r(w)) (rlf(u), r(u))
= (rlf (w) U r(w) rlf(u), r(w)- r(u))
= ({1, xy, r(x1%3), ..., F(W)} U {r(w), r(wy,), ..., r(wi)}, r(wu))
= (rlf(wu), r(wu)) = (W) y.
In order to see that (wy)~! = w1y it suffices to show that
r(w) "1 rlf(w) = rlif(w™1).
Indeed,
r(w)~tef(w) = r(x, " x, 0y oxr D{L, xq, r(x,X5), ..., (W)}
={r(x;toxr D) (et x T )Xy, e 1 e xT ) P (W)}
={rw™ "), ..., r(xy ' x;2y), x; 1, 1} = rlf(w™?).

Hence ¥ is a homomorphism of involuted semigroups.
Let (4, g)ely. Then A = {w,, w,, ..., w,} for some w,eG,, and since
ge A, we may take g = w,. We now let

w=(w, Wl—l)(Wsz-l)---(Wn—lwn-lx) Wy

It is clear that A = rlf(w) and that r(w) = w, = g so that (4, g) = wy. Thus
Y maps Z onto I,.

As a consequence, I, is a monoid.

Let © be the congruence on Z induced by y and let ¢ be the Vagner
congruence on Z. Since I, is an inverse monoid, we have g <t by the
minimality of g¢. For the opposite inclusion, we proceed as follows.
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For w=x,x,...x,€Z, letting

w= (xlxl_l)[r(xle)r(xlxz)_l] v [r(xy e Xp— ) (x4 "'xn—l)_l] r(w),

we claim that wow. The argument is by induction on n. This is trivial for
n=0,1. Let n>1 and assume the statement is true for all kK <n. Then

Xy Xgeo Xy @ (X X7 V) [Py X ) P(Xy e X 2) 1P (X - X 4) X,
Q(xyxg ). [r(xy oo X )Xy oo Xn— 1) T T [P0y - X - 1) X, ]
=X X0 [Py X ) (X e X g) T ] P (X - X)),

which proves that wow. Now assume that wzu. Then wy = uy so that
rlf(w) = rlf(u) and r(w) = r(u). It follows easily that wg i, which by the above
yields wou. Hence 7 = ¢ and ¢ indeed induces g.

As a consequence of this theorem and the remarks made just before it, we
have

COROLLARY. The pair (I, @), where ¢: x —(X, x), is a free inverse monoid
on X.

3. Free semilattices. It is well known that a free semilattice on a set
X admits a representation as the set of all finite nonempty subsets of X under
the operation of set-theoretical union. If we also include the empty set, we
obtain a free monoid semilattice on X, which will be denoted by Y. Note that
the identity mapping on Yy is an involution.

We may obtain this representation from Z discussed above by first
obtaining an analogue of the Vagner congruence for this case. In fact, let # be
the congruence on Z generated by the relation

{W? u) | ueZ} v {{uv, vu) | u, ve Z}.

Then a simple argument shows that (Z/n, n*|,) is a free monoid semilattice
on X.

In order to get a homomorphism of Z onto Y, which induces n we
introduce the following concept. For each w = x, x, ... x,€ Z define the content
of w by

c(w) = {Ix,l, Ix3l, .-, %41},
where
x if xeX,
= l = l.
Il {x" if xeX', I
PROPOSITION 1. The mapping c: w— c(w) is a homomorphism of Z onto Yy
which induces n on Z.

Proof. The mapping c is clearly multiplicative. For any xe X and ye X’
we have
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c(x7) = {x} = c(x) = c(x)7*,
cy N={"Y=c)=c),

which implies c(w™!) = ¢(w)~! for all we Z. It follows that ¢ is a homomor-
phism of Z onto Y,. Letting t be the congruence on Z induced by c, we get
n < 7 by the minimality of n. The opposite inclusion follows without difficulty.

As a corollary we infer that Yy is a free monoid semilattice on X. In the
notation introduced in the preceding section, we may extend the concept of
content to any subset A of E by letting

c(A) = {J cw).

weA
As another consequence, we obtain

COROLLARY. The mapping (A, g)— c(A) is a homomorphism of 1, onto Yy
which induces the least semilattice congruence on I,.

Proof. It suffices to observe that for any we Z we have c(w) = c(rlf(w)).
4. Free semilattice of groups. We call semilattices of groups completely
inverse semigroups (they are precisely completely regular inverse semigroups). We

can proceed here as in the preceding sections. Indeed, let v be the congruence
on Z generated by the relation

1

{uu™"u, u) |ueZ} U {(uv™", oo~ 'u) | u, ve Z}.

Then an argument analogous to the one for inverse semigroups yields that
(Z/v, v*|y) is a free completely inverse monoid on X.

PROPOSITION 2. The mapping ¢: w—(c(w), r(w)) (we Z) is a homomorphism
of Z onto the subsemigroup

Cx ={(A, e Yyx Gy | c(u) < A}

of Yy x Gy which induces v on Z.

Proof. It is easy to see that ¢ is a homomorphism of Z into Cy. If
(4, weCy, then

U=x;%5...%, and A ={x;, X5 .0, Xpps -+1» X}
so
(u(x;,,+1x;il). NE S l))‘P = (4, u).

Hence ¢ maps Z onto Cy.

It follows that Cy is closed under multiplication and inversion, so is an
inverse semigroup. Being a subdirect product of a semilattice and a group, it
must be a completely inverse semigroup.
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Now let T be the congruence on Z induced by ¢. Then by the minimality
of v we have v 7. For w=x,x,...x, we let

w¥ = (Il x| ™) (%] 1ol =) (W)

and observe that wvw*. If now wtu, then c(w) =c(u) and r(w)=r(u),
which implies w* vu*, and thus wtu. Consequently, T < v, and the equality
holds true.

COROLLARY 1. The pair (Cy, 0), where 0: x—({x}, x), is a free completely
inverse monoid on X. Furthermore, Cy is a subdirect product of Yy and Gy.

COROLLARY 2. The mapping (A, g) —(c(A), g) is a homomorphism of I onto
Cy which induces the least completely inverse congruence on I. Moreover, the
intersection of the least semilattice congruence and the least group congruence
equals the least completely inverse congruence both in Z and in I.

We can now derive the form of Liber [1] of a free completely inverse
monoid on X as follows. The notation [Y; G,, ¢.z] stands for a completely
inverse semigroup S which is a semilattice Y of groups G, with connecting
homomorphisms ¢, 4. As above, let G, denote the free group on A, and for
A< B let iy p: G,— Gy be the inclusion mapping. We readily deduce that

Cx =[Y; G, iqsl.

5. Graph representation. Here we follow the notation and terminology of
Munn [3] and refer the reader to this paper for a complete discussion of this
subject. We will list now only a few most essential concepts we will need. The
only deviation from [3] is the fact that we consider here a free inverse
monoid over X instead of a free inverse semigroup over X.

A tree is a connected graph without cycles. A word tree T on X is a finite
tree with oriented edges labelled by elements of X and having no subgraph of
the form

—O— - O or O— O o
X x x

(e —O

x Y

The set of labels is extended to X u X’ by the convention that

O———» o
-1
X
has the same meaning as

Oo—=—0 .,
X

Let T be a word tree on X. We denote by V(T) the set of vertices of T.
Let a, Be V(T). An (a, f)-path on T is a sequence

(a=‘)’0’ Yis V25 -00s yn=ﬂ)

of distinct vertices of T such that y;_,, y; are adjacent fori=1, 2, ..., n; we
denote it by IT(a, f).
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An isomorphism of word trees T and T’ is a bijection of V(T) and V(T’)
which preserves adjacency, orientation of edges, and labelling of edges.
Obviously, isomorphism is an equivalence relation on the class of all word
trees. Let I, be a transversal of the isomorphism classes of word trees on X.

Let T T'eJ y and aeV(T), a’e V(T'). Let ye V(T’) and let

(@ =705 V1505 Vu=17)
be the (o, y)-path in T'. There exists de V(T) such that
I(a, f) =(x =064, 045 ..., Opy = O)

is isomorphic to (&' = y,, 74, ---» ) and m is the greatest integer with this
property. We now identify y, = 6, fori =0, 1, 2, ..., m. If m < n, we attach the
graph (y,,, Ym+15 ---» 7,) to the vertex y, = 4,,. Doing this for every ye V(T’), we
evidently obtain a word tree on X. Let T(x, ') T' denote its representative in
J. It is a notational convenience to identify the vertices of Tand T’ with the
corresponding vertices of T(a, a') T'.

A triple (T; a, p) is a birooted word tree on X if Te 7, and a, € V(T). Let
BT, denote the set of all birooted word trees on X together with the
multiplication

(T, o, p(T, o, B) = (T(B, &) T, &, B).

The convention at the close of the preceding paragraph guarantees that
BTy is closed under this operation. It is remarkable that this multiplication
has a very similar form to that in a Rees matrix semigroup .#(G; I, A; P)! We
construct next a function from I, into #7, which will turn out later to be an
isomorphism.

First note that the length of a word w = x, x, ... x,€ Z is equal to n. Hence
the length of 1 is zero. We let (A4, g)el,. We will construct inductively
a birooted word tree on X associated to (4, g).

To 1 we associate a vertex o. Let we A be of length 1. Form an edge («, y)
labelled by x. Keep a fixed and apply the same procedure to all other words
in A of length 1, thus obtaining the edges of the form (a, J), ... Assume
that we have assigned a path, starting at a, to each word in A of length less
than k, and let w = x,x,...x,€A4. Observe that there exists a unique path
(@ = 79> Y15 -+-» Yx—1) labelled by x,, x,, ..., x,_; in the graph already con-
structed. Attach an edge (y:-1, ;) labelled by x,. Do this for all words in A4 of
length k.

We.are thus able to construct inductively a word tree. Denote by T its
representative in 7, and let B be the vertex of T for which the (a, f)-path is the
one labelled by x,, x,, ..., x,, where g = x, x,...x,. In this way, we arrive at
a birooted word tree (T, o, f) on X and writte (4, g)t = (T, a, f).

THEOREM 2. The function t just defined is an isomorphism of I, onto BT .
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Proof. First note that, for (A4, g)ely, (4, g)t is the unique birooted word
tree (T, a, f) on X for which the set of all («, y)-paths bears the labels of words
in A (the (o, a)-path corresponds to 1) and (e, B)-path bears the label of g.
Hence 7 is a function mapping I, into 7.

Next let (T, o, f)e BT 4. Let A be the set of all words in Z which label the
(o, y)-paths as y runs over V(T), and let g be the word which labels I1(a, ).
Note that any edge with a “wrong” orientation labelled x can be replaced by an
edge with a “right” orientation labelled x~!. Clearly, with every we 4, all the
left factors of w are also in A. Since also g€ A, we get (A, g)e . It is easy to see
that (4, g)t = (T, o, f) and (A4, g) is the only element of I, with this property.
Consequently, t is a bijection of Iy onto 8J5.

For (4, g), (4, g')el, we have

(4, 9)(4', g) = (Au g4, g9);

let (4, g)T=(T, a, ) and (4', g')T = (T", &, B'). The word tree corresponding
to A UgA' is obtained by taking the union of T and T shifted by II(a, B), that
is, the union of T and T’ with o’ being identified with . But this is the word
tree T(B, &) T’ constructed before the present theorem. Since f and a’' have
been identified, the path II(x, f) can be obtained by following II(a, B) by
II(o!, B). This shows that gg’ labels IT(x, f'). Therefore t is also a homomor-
phism.

We may combine Theorems 1 and 2 to deduce easily some of the principal
results in [3]; we omit the details. For a word tree T, let

I(T) = {|x|] | x labels an edge of T}.

From the discussion in Sections 3 and 4 we then get, for U = (T, «, f) and
UI — (Tl, al’ ﬂl),
UsU<=I p)=M(, ), UnU<=IU)=IU),
UwUs=He I, f), I(U)=IU),

where 0 and n are the least group and semilattice congruences on #J,
respectively, and v=o0nn is the least completely inverse congruence
on #J.
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