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COMPACTA WHICH ARE QUASI-HOMEOMORPHIC WITH A DISK

BY

LE XUAN BINH (WARSZAWA)

1. Introduction. By a disk we mean any set which is homeomorphic with
the ball K = {xe E?: |x| < 1}. We shall consider metrizable spaces only. By a
compactum we mean any compact metric space. The AR-spaces will be
assumed to be compact. A map f of a compactum X into a space Y is said to
be an e-mapping if diamf ~(y) < ¢ for every yef(X). A compactum X is said
to be quasi-embeddable into a space Y if for every ¢ >0 there is an e-
mapping of X into Y. Given two compacta X and Y, X is said to be Y-like if
for every ¢ > 0 there is an e-mapping of X onto Y. The spaces X and Y are
said to be quasi-homeomorphic if X is Y-like and Y is X-like.

In this paper we establish the class of all compacta which are quasi-
homeomorphic with a disk. Our main result is the following

THEOREM 1. A compactum X is quasi-homeomorphic with a disk if and
only if X is a 2-dimensional AR-space embeddable into E*.

First, we give an example of a compactum quasi-homeomorphic with a
disk D which is not homeomorphic with D.

Example 1. Let X be a locally connected continuum and let X be the
union of a sequence of disks (D;)2, such that D,nD;,, =(p), i=1, 2,...,

diam(D,) —» 0, and of a point g such that the space X = () D;u {q} is
i=1

compact.
Obviously, X is a continuum which is not homeomorphic with D. Given
an ¢ > 0, there is an index ny such that

diam( U D)) <e.

i=ng+1

no
We define a retraction r from X onto () D; as follows:
i=1

r( G Di)=pno,

i=ng+1
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where p,, is a point in common of the disk D,  with D, .,. For each p,
i=1,...,no—1, choose arcs I} and I such that

Ill < ljia 1'2 < Di+la ‘l mI'Z =(pl)’ and dlam(Ill UI.Z) <£/2

Let us glue the disks along these arcs. Thus, we obtain an ¢-mapping f; of
no 4

U D; onto D. Then f=f,r is an ¢-mapping of X onto D.
i=1

It is easily seen that for any ¢ >0 there is a subset X' of D
homeomorphic with X and such that there is a retraction r of D onto X’
being an e-mapping. Thus there is an e-mapping of D onto X.

2. Some lemmas. A locally connected continuum containing more than
one point will be called cyclic if it is separated by no point. Given a locally
connected continuum X, the following subsets of X will be called the cyclic
elements of X: each point which separates X, each end-point of X (ie., a
point of order 1 in the sense of Menger-Urysohn), and each non-degenerate
subset of X maximal with respect to the property of being a cyclic space. The
graph K, is the 1-skeleton of a 3-simplex with mid-points of a pair of non-
adjacent edges joined by a segment and the graph K, is the 1-skeleton of a
4-simplex. A 2-umbrella T is the one-point union of a disk and of an arc
relative to an interior point of the disk and an end-point of the arc. Any set
homeomorphic with S2 is said to be a simple surface. A set is called cyclic if
it is not disconnected by a point.

We shall base ourselves on the notion of a cyclic element and on the
properties of cyclic elements given in [4].

Let X be a compactum quasi-homeomorphic with a disk.

2.1. X is a locally connected continuum containing neither K, nor K,, nor
T, and X is not a simple surface.

Since X is a continuous image of D, it is a locally connected continuum.
Since X is D-like, X is quasi-embeddable into E2. Then X does not contain
K,, K,, T, and X is not a simple surface [6].

2.2. No simple closed curve S < X is a retract of X.

By 2.1, X is a locally connected continuum. Suppose that there is a
simple closed curve S = X which is a retract of X. Consequently, the first
homology group H, (X, Z) of X in the sense of Cech is not trivial, which
yields a contradiction with Theorem 1 of [5] because H, (D, Z) =0.

23. If E is a non-degenerate cyclic element of X, then no simple closed
curve S © E is a retract of E.

Each cyclic element E of a locally connected continuum X is a retract of
X (see [4]). If there is a simple closed curve S = E which is a retract of E,
then S is a retract of X, which is a contradiction by 2.2.
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24. If E is a cyclic element of X, then E is either a point or a disk.

By 2.1, X is a locally connected continuum containing neither K, nor
K,, nor a 2-umbrella. It follows that X does not contain the simple surface
S2. Indeed, if X contains S, then X —S? # Q. Since X is arcwise connected,
X contains a 2-umbrella, which contradicts Lemma 2.1. Let E be a non-
degenerate cyclic element of X. Then E is a locally connected continuum [4].
By 2.3, no simple closed curve S < E is a retract of E. Moreover, E does not
contain K,, and E is not a simple surface. Consequently, E is a disk (cf. [7]).

25. Remark. In the proof of Lemma 2.4 we have shown that if‘E is a
non-degenerate cyclic element of X, then E is a disk. Moreover, notice that
X has a non-degenerate cyclic element, i.e, X contains a disk. Indeed, if X
contains cyclic elements which are the points only, then X is a dendrite,
which contradicts the assumption that X is quasi-homeomorphic with a disk
(a dendrite is 1-dimensional).

26. X is an AR embeddable into E>.

By 2.1 and 24, X is a locally connected continuum and each cyclic
element of X is either a point or a disk. Notice that points and disks are the
AR'’s. It follows that X is an AR (see [4], p. 346). By Theorem 3.1 in [9] and
by 2.1, X is embeddable into EZ.

27. If Y is an AR embeddable into E?, then each cyclic element of Y is a
point or a disk.

This follows from [2] (p. 132) and [4] (p. 346 and p. 526).

28. Let X, Y, and Z be compacta. If X is Y-like and Y is Z-like, then X
is Z-like.

Let ¢ > 0 be given. Since X is Y-like, there is an ¢-mapping f; of X onto
Y. By [4] (p. 35), for an ¢e-mapping f; of X onto Y there is an n > 0 such that
if B<Y and diamB < 5, then diamf,"'(B) <e¢. Since Y is Z-like, for an
n > 0 there is an n-mapping f, of Y onto Z. Let f=f,f,. Then it is clear that
f is an ¢-mapping of X onto Z.

3. Proof of Theorem 1. By 2.6 and [4] (§ 45, IV) the necessity of the
conditions of Theorem 1 is clear, so it remains to prove the sufficiency.
Assume that X satisfies the conditions of Theorem 1. Then, by 2.7, each
cyclic element of X is a point or a disk.

Given an ¢ > 0, we shall first prove that there is an ¢-mapping of D onto
X. It is easy to see that for an ¢ > 0 there are a finite sequence (a;)., of the
boundary points of D and neighborhoods K; of g; in D. These neighborhoods
have the diameter less than ¢/4 and

0<o(a, a,)=n<edfori=1,..,N-1, 0<g(ay,a)=n<¢/4,
K,F\Kj=®f0ri¢j, K—inK—i+l =(d,)(i= 1, ceey N"l), and KNmK.l =(d~),
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where d; (i =1,..., N) are the boundary points of D. As K;_; UK; UK,
(i=2,...,N=1), Kn_, uKyuK,, and KyuK,; UK, are connected sets,

diam(K;_, uK;UK;,,) <diamK,;_, +diamK;+diamK,, ,
<éefd+efd+efd=3¢/4 fori=2,...,N—-1
and, similarly,
diam(Ky_, UKyUK,)<3¢/4 and diam(KyuK, uK;) < 3¢/4.
Indeed, for each i there is a retraction r;: K; »L; U L;, where L, = bi_bi,
L; is the arc containing d;_,, b;, d;, and L, L; =b; fori =2,..., N, and L,

=a, b,, L, is the arc containing dy, b,, dy, LynL, =b, (Fig. 1). Let r
be defined by

i=1

N
y  if yeD'=D—{J K,,
0= PR
rl'(y) lnyKi (l=19"'s N)‘

Fig. 1

N
Then r is a retraction of D onto D' u (J L;. Choose a non-degenerate cyclic
i=1

element of X which is a disk D,. Let h be a homeomorphism of D’ onto -D,
and let h(b;) = x;. Let

N
Z=Dvu | L.
i=1

Notice that the set of the components of X —D, is at most countable (see
[4], p. 318) and the closure of each component of X —D, is a locally
connected continuum having exactly one point in common with Dy (cf. [4],
p. 312). Now, we consider the set

Ai=x,-x,~+,u U Clk, i=l,...,N-'1,

k=1
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where x;x;,, < D, and Ci denotes the closure of the component of X — D,
which has only one point in common with x;x;,, and

a0
A, =xyx;u U CY.
k=1

Observe that the sequence Ci, C5,... can be finite. It is easy to show that A;
is a locally connected continuum. Thus for each i there is a map g;: L; » A4;.
We can assume that g;(b;) = x;. Consider the map g’: Z —» X defined by

. (hz) if zeD,
9@ =10 ifzeL (i=1,..., N).

Obviously, g’ is continuous. Let g = g'r; then g is a map of D onto X. Let
xe X. If xelntD,, then g~ !(x) is a point, and if xe X —Int Dy, then xe A4;
for certain i. From the constructions of r and g’ it follows that

g 'x)cK,_;uK;uUK;,, fori=2,...,N—1
and, similarly,
g '(x) = Ky_yURyUR, if xedy, ¢ '(x)cRyUR,uUK, if xeA,.
Since
diam(K;,-, uK;uK;,,)<e fori=2,...,N—1,

diam(KN_l UK—NUK1)<8 and diam(KNUK1 UK_2)<8,

we have diamg~!(x) <& Thus g is an e-mapping of D onto X.

Now, let us prove that there is an ¢-mapping of X onto D. In this proof
we base ourselves on the notions of a set entirely arcwise connected and of a
cyclic element and also on their properties. A subset 4 of a given locally
connected continuum X is said to be entirely arcwise connected (in X) if
x, ye A and x # y imply that each arc (in X) joining x and y is contained in A.

We shall first show that the following additional assumption can be
made.

3.1. There is a finite set F — X such that the least closed and entirely
arcwise connected subset of X containing F is equal to X.

Indeed, let F; denote any finite subset of X such that for each point
xe X there is a point yeF; with ¢(x, y) < 1/i, where i =1, 2,... Let A4,
denote the least closed and entirely arcwise connected subset of X containing

k
the set |) F;. Assume that no A4, is equal to X. Then the sets A, satisfy the
i=1
assumptions of (3.14) in [8] and, therefore, there is an index k, such that the
diameter of each component of X — A4, is less than /3. Let r, denote the

retraction of X onto A, such that for each component C of X — 4, we have
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ro(C) = C—C (cf. [4], p. 346). Suppose that there is an (g/3)-mapping f,:
Ay, —»D. Then fyro is an e-mapping of X onto D, which implies that the

additional assumption 3.1 can be made. (Notice that the set 4, = X satisfies
analogous assumptions to those satisfied by X.)

3.2. There is an e-mapping of X onto D.

The proof of 3.2 will be inductive with respect to the number of m
points of the set F mentioned in 3.1. Evidently, we can assume that m > 1.
First, we consider the case m = 2. Let F consist of the points a, and a,. By
(3.13) in [8], X is the union of an arc L joining these points and of a
sequence (finite or not) E,, E,,... of the non-degenerate cyclic elements of X
(cf. [4]), where E;nL is a non-degenerate subarc L; of L and E;NE;
=L,nL;=L;nL; for i #j. Notice that we can assume that the sequence
E,, E,,... is finite. Otherwise, by [4] (p. 319) there is an index n, such that
the diameter of each element E, with n > n, is less than ¢/3. Evidently, there

no

is a retraction r, of X onto Lu |J E; such that ro(E,) = L, for n > ny. The
i=1
condition given in 3.2 will be satisfied if we consider the composition of rg
and of a suitable map of ry(X) onto D.
Thus we can assume that X has exactly n, non-degenerate cyclic

elements which are the disks (see 2.7). It is easy to see that X is the union of

ne disks and m, arcs which can be ordered in a sequence (4,);2 f"'o such that
A;inAisy =(x) and A;nA; =Q if |i—j| > 1. Then, by the same method as
that used in Example 1 we can construct an ¢-mapping of X onto D. Thus
the proof of 3.2 for m = 2 is completed.

Induction step. Now, suppose that the set F = X mentioned in
3.1 consists of m points, where m > 2, and assume that 3.2 is true for each
space satisfying the assumptions analogous to those satisfied by X with the
corresponding set having less than m points. Fix a point aeF and let Y
denote the least closed and entirely arcwise connected subset of X containing
the set F—(a). We can assume that a¢ Y and let C denote the component of
X —Y containing a. Then C—C consists of exactly one point b (cf. [4], p.
312). Let Z denote the least closed and entirely arcwise connected subset of
X containing a and b. Then Z = C. Since the set Y U Z is closed and entirely
arcwise connected (cf. [4], p. 313) and it contains F, we have YuZ = X,
whence Z = C.

It is clear that the sets Y and Z satisfy the induction hypothesis and
Y nZ = (b). Therefore, there are two (¢/2)-mappings f;: Y —»D;, and f;:
Z—»D, such that f,(b)=f,(b)=b" and D, D, =(b’), where b’ is a
boundary point of disks D; and D,. Then the function

A i xeY,
f(x)—{fz(x) if xeZ
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is an e-mapping of X onto D, u D,. Since D, U D, is D-like (see Example 1),
by 2.8 there is an e-mapping of X onto D.

4. A characterization of the plane AR-spaces by means of quasi-
homeomorphisms. A dendrite is any locally connected continuum which does
not contain any simple closed curve. Notice that

4.1. 4 dendrite is embeddable into E>.

4.2. One-dimensional AR-spaces coincide with non-degenerate dendrites
(see [2], p. 138).

4.3. A compactum quasi-homeomorphic with a dendrite is a dendrite.

Since X is a continuous image of a dendrite, X is a locally connected
continuum. By the theorem of MardeSi¢c and Segal in [5], X does not
contain a simple closed curve, whence X is a dendrite.

By 2.8 and Theorem 1 we obtain immediately the following

4.4. CoroLLARY. All plane 2-dimensional AR-spaces are quasi-homeo-
mor phic.

4.5. CoroLLARY. A compactum X is a plane AR if and only if X is quasi-
homeomorphic either with a disk or with a dendrite.
The necessity of the conditions follows from Theorem 1 and 4.2. The

sufficiency follows from Theorem 1, 4.2 and 4.3.
By 2.8 and Corollary 4.5 we obtain

4.6. CoroLLARY. Each compactum quasi-homeomorphic with a plane AR is
itself an AR embeddable into E>.

5. Compacta quasi-homeomorphic with a plane 2-dimensional manifold.
We shall establish the class of all compacta which are quasi-homeomorphic
with a plane compact 2-dimensional manifold, i.e., a disk with holes. By M
we denote a plane compact 2-dimensional manifold which is not a disk. The
main result of this section is the following

THEOREM 2. A compactum X is quasi-homeomorphic with M if and only
if X is a locally connected continuum embeddable into E*, containing exactly
one cyclic element disconnecting E?, this cyclic element being homeomorphic
with M.

First, we consider two examples.

Example 2. Let M be a disk with two holes, and let X be a disk with
two holes such that the closures of these holes have one point x, in common.

We show that M is not X-like. Let C;, C}, S;, S; denote, respectively, the
components of E2— M, the components of E2— X, the boundaries of C;, and
the boundaries of C; for i =1, 2, 3 (Fig. 2). The boundaries S; and S; are
simple closed curves such that §; « M and S; = X. Take an ¢€(0, n/3], where

n= mjﬂ(Q(Sl, SZ)’ Q(sz’ S3)’ Q(Sl, S3)) > 0.
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Fig. 2

First, we shall show the following fact:

5.1. If fis an e-mapping of M onto X, then for each point ac M such that
o(a, S)>¢ for i=1, 2, 3 we have f(a)elnt X.
If apeM and g(ao, S;) >¢ for i =1, 2, 3, then the set

U = {acE?%: ¢(ag, a) <&}

is contained in M. By a result of Borsuk [1], there is an open set V < E?
(also in X) such that f(ag)e V = f (M) = X. Consequently, f(ao)eInt X.

Now, assume that M is X-like and let f be an ¢-mapping of M onto X.
Put

A, =l{aeM: g(a, S) <¢&}.
By 5.1 we have

3 3
Urisye U A

Now, we consider the set f~!(S}). Let x be a point of S} and let m be a
3

point of M such that f(m) = x; then me () A4;. We can assume that me A4, .
i=1

Let m" be any point of M such that f(m’) = x. Since ¢(4;, A;)) > ¢ for i #j
(i,j=1,2,3), we have m'e A,. Thus, for any point xeS; there is an index
i, <3 such that f~1(x) = A;_. Since f is an e-mapping and ¢(4;, 4;) > ¢ for
i #j, the set {xeS|:f~1(x) = 4;} is closed in S for each i and these sets are
disjoint. Then from the connectivity of S; we infer that f ! (x) = A, for every
xesS;.

Now, observe that the inclusion f~!(S}) uf~1(S;) = A, is impossible.

Indeed, if the inclusion holds true, then f(A,) is a continuum (locally
connected) containing S; U S5. If the set f~!(S3) is contained, say, in A,,
then f(A,) is a continuum containing S3. It is easily seen that the sets f(4,)
are disjoint, and hence the set f(A;) lies in the interior of X. By Fort’s
lemma (see [3]), the image f(S;) = f(A;) contains a simple closed curve
being a retract of X, therefore disconnecting X between S5 and S US5.
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3
Then the set f(M— (J A;) intersects the set f(S;) or it is a disconnected set.
i=1

In both cases we obtain a contradiction.

Now, we consider the point x,. Since x,eS8]; NS5, we have
f~1(xo) = A; and f~!(x,) = A, U A,, which contradicts the fact that A4,’s are
disjoint.

Example 3. Let M be a disk with two holes and let X = M, uM,,
where M, and M, are disks with one hole such that M, n M, =(x,) and x,
is a boundary point of M, and of M,.

We shall show that M is also not X-like. Let S; (S;) denote the
boundaries of the components of E2—M (of E2—X) for i=1, 2, 3. The
boundaries S; for i =1, 2, 3 and S}, S, are simple closed curves, and S} is
the union of two simple closed curves with one common point x,, where
S; M and S; c X. Take ¢, n, and A; as in Example 2. Now, assume that M
is X-like and let f be an ¢-mapping of M onto X. By the same argument as
in Example 2 it follows from 5.1 that each set f~!(S}) is contained in one of
the sets 4; (i=1, 2, 3) and that the inclusion f~1(S))uf~'(S) < A4, is
impossible. Let us consider the connected set M —A;. Suppose that
f~1(Sy) = A, and f!(Sy) = A,; then f~!(S3) < A; and S;uUS; cf(M
—A;), where S < M,, S5cM,, M{nM, =(x,). Since x,cS83, we have
xo¢f (M — A;). Consequently, the set f(M —A4,) is not connected, which
yields a contradiction.

Proof of Theorem 2. Let X be a compactum quasi-homeomorphic
with M, where M has exactly n > 1 holes. Then:

5.2. X is a locally connected continuum embeddable into E* and E*—-X
has n bounded components.

83. If E is a cyclic element of X, then E is either a point or a disk, or a
disk with holes where the number of holes of E is not greater than n.

Since X is a continuous image of M, X is a locally connected
continuum. By Theorem 3.1 in [9], X is embeddable into E2. Since X is
quasi-homeomorphic with M, E>— X has exactly n bounded components
[10].

Let E be a non-degenerate cyclic element of X; then E is a locally
connected cyclic continuum embeddable into E2. Assume that E is not a
disk. Then E disconnects E2. Let C, (i=1,..., k) denote all bounded
components of E2—E. Evidently, k <n. Then C; is a disk and C,nE
= Bd(C)) is a simple closed curve ([4], p. 506). Let £ denote the union of E

k
and of |J C;. Since Bd(C;))  E, we have
i=1

i
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E is a locally connected continuum and, moreover, E is a disk ([4], p. 526).
We can prove that the boundaries of C; cannot have common points and,
therefore, E is a manifold.

By the same method as in Example 3 we infer that:
54. X has exactly one cyclic element E, being a disk with n holes and,

therefore, E is homeomorphic with M.

By 5.2 and [4] (§ 45.1V) we see that the conditions given in Theorem 2

are necessary. Using the same argument as in the proof of Theorem 1 we can
show that X is quasi-homeomorphic with M, which proves that the
conditions are also sufficient.
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