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1. Introduction. In [13] an integrable space was defined as a pair
¥ = (L, v), where L is a group of functions and » is & kind of a “countably
subadditive” seminorm on L. Some basic properties of .# and its closure-

type extension .# were established therein. The investigation of integrable
spaces was continued in [14]. The present paper is also a continuation
of [13], but it goes in another direction. Namely, we restrict ourselves
to the case where L is a Riesz subgroup of R¥, thus arriving at the notion
of a real integrable space (Definition 2). We study some properties of
such spaces connected with the continuity of » with respect to various
kinds of pointwise convergence (Fatou, Daniell, saturability, Lebesgue
and Beppo Levi properties). They have been mainly suggested by the
theory of Lebesgue integration. We prove that all these properties are
preserved when % is extended to £ (Theorems 1-4 and 8). As an applica-
tion we give a new proof of the remarkable Pellaumail’s extension theorem
for Daniell spaces [10] (Theorem 6 in Section 4).

2. Preliminaries and Fatou property. We adopt here the terminology
and notation introduced in [13]. In particular, S8 denotes an abstract
set, (X, |-]) stands for an abelian complete normed group, and & = (L, »)
is an integrable space, where L — X* (see [13], Definition 1). We start
with establishing some elementary properties of integrable spaces, which
are not pointed out in [13].

ProposITION 1. If {f,} = L is a Cauchy sequence in L* and

lim f, = f,
n—00
then
feL and lLmXN(f,—f) =0.
n—>00
Here and in what follows by
lim f,, = f
n—00
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we mean that
lim f,(s8) =f(s) for all se 8.
n—>00

Proof. Choose a subsequence {f, } with

ZN(fnm_,_l—fnm) < oo,

m=1
Since

F(8)=Fny(8) = D (fupyy(8) —Fnr(8)  for se 8,

m==1
we have

f—fnlz Z(fnm+1_fnm)'

Hence, by Corollary 1(3) of [13],

k
feL and  EmN(f—fo,— 3 Uy —fan)) = 0.
Thus
Lm N (f—f,) =0.
k—00

* COROLLARY 1. Let {f,} = L be a Cauchy sequence in L* and let fe RS,
Then the following two conditions are equivalent:

(i) fe L and lim N (f,—f) = 0.
n—00
(ii) There are a subsequence {f, } and a sequence {g,} L such that

limg, =f and N(f, —9gm) =0, m=1,2,..

m—>oo

Proof. Assume that (i) holds. Then there exists a subsequence { St
with

DN (f,, —f)< oo.

m=1

Put g,,(8) = [, (8) if g‘]fnk(s) —f(s)| < oo and g,,(8) = f(s) otherwise.
Since fe=1

fap— Ol < DS, —fI forl=1,2,..,
k=1
it follows that g, e L* (L* = L**) and N(f, —gn.) = 0.
Assume that (ii) holds. Then {g,} is a Cauchy sequence in L*, so
that, by Proposition 1,

feL and lim N(g,—f) =0.

m—>00
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It follows that
limN(f,—f) =0.
n—>00

Definition 1 (cf. [8], p. 42). An integrable space ¥ has the Fatou
property if
(F) Ifl <limt|f,| implies »(If]) <lm*to(1f,l) (f, fre L).
n—oo

N~—»00

We use the symbol lim4 (lim|) to indicate that the convergence we
deal with is non-decreasing (non-increasing). The limit values -+ oo or
— oo are not excluded.

PROPOSITION 2. Suppose & has the Fatou property and |L|+ |L| < |Lj.
Then, for every fe L,

»(1f1) lnf{llmTv(Ifnl) {fatc L&IfI< hmTlfn|}
Proof. Put

N'(f) = lnf{llmTV(lnt) {(fad e L&IfI< llmTlfnl} for fe L*.

By the assumption that |L|+|L| < |L|, N'<< N and N’ is a semi-
norm on L*. The Fatou property implies that N'(f) = N(f) if fe L. The
continuity of N’ with respect to the topology generated by N now yields
N'(f) = N(f) for all fe L.

Suppose that L is a subgroup of X% satisfying |L|+|L| < |L|, and
v: |L| - R* is such that »(0) = 0 and »(|f] + |g]) < »(If1) +»(lg]) (subad-
ditivity). Then ¥ = (L, ») is an integrable space provided that (F) holds.
The following example shows that the converse statement is not true.

Example 1. Let X = R and put L = {ayg: ae R}. Define »(0)
= 0,v(ays) =1 for ae(0,1) and v(ays) = 2 for ae[1, o). Clearly, the
pair (L, ») is an integrable space, but (F') does not hold.

3. Daniell, saturability and Lebesgue properties. In the following
(R, +, <, |*|) stands for the additive group of the real numbers with the
usual ordering and the euclidean norm |-|. Given a (non-empty) set S,
the pointwise addition and partial ordering make RS into a lattice-ordered
group. The joint and meet in RS are denoted by v and A, respectively.
For any F c RS, we write F+ = {f*: fe F}.

A family F < RS is said to be a Riesz subgroup of RS if it is a subgroup
and a sublattice of RS.

Remark 1. A subgroup F of R® is a Riesz subgroup of RS if and
only if F* c F. In this case |F'| = F* = {fe F: f> 0}.

Definition 2. A pair & = (L, ») is a real integrable space if

(a) L is a Riesz subgroup of RS,



236 M. WILHELM

(b) » is a function from L* into R* such that »(0) = 0 and if

frfacZ* and  f< 3,

n=l

then
()< Dv(Fa)
n=1

Clearly, any real integrable space is an integrable space in the sense
of [13], Definition 1. Suppose £ = (L, ») is an integrable space with
L < RS. Then % is real if and only if L is a sublattice of RS. In particular,
£* = (L* v*) is a real integrable space.

Throughout the rest of the paper & = (L, ») denotes an arbitrary
real integrable space.

PROPOSITION 3. & = (L, %) is a real integrable space and L+ < L*.

Proof. By Remark 1, it is enough to prove the second part of the
assertion. Put ¢(f) =f* for feL*. The inequality |f+—g*|<|f—gl
shows that ¢ is a continuous function on L*. Hence ¢(L) = ¢(L).

The following lemma will be a useful tool in our further investigations:

LemmA 1. If {f,} i a non-decreasing sequence in L, then, given an
&> 0, there exists a non-decreasing sequence {g,} in L such that

llmTfn llng,, and N(f,—g,)<e forn=1,2,...

The functwns g, can be chosen non-negative (non-positive) provided
that f, are non-negative (non-positive). '

Proof. By the definitions of L* and L (see [13], p. 911-912), there
exist h,e L and h,,ec L* such that

oQ 0

fo=tal < Dl and  Y'w(hym) <e27"' (0 =1,2,...).

m=1 m=1

Write 5
G = Vh + Z‘ hpm for k=1,2,...

n=1 n,m=1

Clearly, the sequence {g,} = L is non-decreasing and

fa<limtyg, forn=1,2,...
k—»o0 .

Moreover, we have

k
| gk|—|an V= 13 | <

n=1 n,m=1 =1 n,m=1 n,m=1
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so that
N(fi—g) <2 De2" ' =¢ (k=1,2,...).
n=1

To prove the second part of the assertion, replace g, by g} (or
by —gz). ‘

THEOREM 1. If & has the Fatou. property, then 2 also has this property.

Proof. Assume that

fyfae LY and f<lim?f,.
n—»co
Given ¢ > 0, take a sequence {g,} = L* as in Lemma 1. Since

f<lim?g,,

n—00
Proposition 2 shows that
7(f) <lim?1»(g,).
n—>oo
This implies
v(f) <Hm4%(f,) +e.
n—>00
Hence
v(f) <lm13(f,).
n—>co
Definition 3. A real integrable space % has the Daniell property if
(D) lim| f, = 0 implies lim| »(f,) = 0 (f,e¢ L*).

n—»co n—>o00

Since, for f, f,e Lt,

v(f) <v(f) +7((f—fu)¥) . and  Lm} (f—f)* =0
provided that -
f<limtf,

the Daniell property implies the Fatou property. The converse fails to
be true in general.

Example 2. Let L be a Riesz subgroup of R consisting of bounded
functions and put

v(f) =supf(s) for fe L*.
geS

Then (L, ») is & real integrable space having the Fatou property.
Obviously, condition (D) need not hold. Note that L is the uniform closure
of L and - :

7(g) = supg(s) for all ge L+.
-~ 8eS-
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(This follows from the inequality »*(f) > sup f(s) for fe (L*)* and Prop-
8eS

osition 1.) Moreover, if L contains all constant functions on 8, then L*
is precisely the family of all bounded real functions on S and

v*(f) = sup f(8) for all fe(L*)*,
8eS

so that the seminorm N generates the topology of the uniform conver-
gence on L*.
The following remark contains a strengthening of the Daniell prop-
erty:
Remark 2. Suppose £ has the Daniell property. Then
lim| f, < f implies Lim | »(f,) < »(f) (fa, fe L*).
n—>o0

n—00
Proof. Since
lim|(f,—f)* =0
n—00
provided that '
lim| f, <f,

the assertion follows from the inequality f, < f-+(f,—/)*.
THEOREM 2. If & has the Daniell property, then £ also has this
property.
Proof. Suppose that
faoe L*  and lim}f, =0,

n—o0o0

and fix ¢ > 0. We deduce from Lemma 1, applied to {—f,}, that there
exists a sequence {g,} = L* with

lim}g, =0 and N(f,—g,)<e¢ (n=1,2,...).

Since
lim|»(g,) =0,

n—>00
we get

lim | %(f,) < .
n—>00
PROPOSITION 4. Suppose & has the Daniell property. Then, for every
fe E+7
#(f) = sup{lim}»(f,): {fu} = L* &lim} f, <f}.
n—00 f—»00

Proof. The inequality > follows from Remark 2 and Theorem 2.
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To prove the converse one, put f, = —f and fix ¢ > 0. Lemma 1,
applied to the sequence {f,} and ¢, yields a sequence {g,} = L with
—f<limt{g,<0 and N(f+g,) <e.

Putting h, = —g,, we obtain
(B} < L*, lim|h, <f and #(f)<lim}w(h,)+e.

n—00

Definition 4 (cf. [12], p. 158, and [10], p. 1228). A real integrable
space % has the saturability property if

(8) D fa<f implies limy(f,) =0 (fy,feL*).

n=1

A sequence {f,} = F, where F is a Riesz subgroup of RS, is said to
be order-bounded in F if there exists an fe F' with |f,| <fforn =1,2,...

PROPOSITION 5. ¥ has the saturability property if and only if every
monotone order-bounded sequence in L is a Cauchy sequence in L*.

Proof. Necessity. Assume, to get a contradiction, that {f,} = L
is a non-decreasing sequence which is not Cauchy in L*, and that |f,]
<feLforn =1,2,... There are an ¢ >0 and a subsequence {f, } with
N(fopyr—fog) > & for m =1,2,... Put g, =f, —f,, for m=1,
2,... We have, for m =1,2, ...,

{gm} < L*, ng =mf% _fn;l <f—fn1€ L* and »(gm)>e

m=l

which is impossible.
Sufficiency. If
f’fn€L+ and an<f’

Ne=1

m
then { } f,} is a non-deereasing order-bounded sequence in L; thus it
n=1

is a Cauchy sequence in L*. It follows that
lim v(f,,) = 00
n—+00

As an immediate consequence of Propositions 5 and 1 we get
COROL LARY 2. Let & have the saturability property. If {f,} i8 a monotone

order-boun ded sequence in L wilh
lim f, = f,

N-+00

then
feL and im~N(f,—f) =0.
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In particular, if & has the saturability property, then it has the Da-
niell property. The converse assertion need not hold.

Example 3. In Example 2 take for 8 a topological space and for
L the family of all continuous real functions on § with compact support.
Dini’s theorem shows that the integrable space (L, ») has the Daniell
property. Suppose 8 is a locally compact Hausdorff space. If § is non-
-discrete, then one can construct an infinite sequence of non-empty dis-
joint open sets contained in a compact subset of 8, and, consequently,
choose f,, fe L* with ) f, <f and »(f,) =1 (n =1, 2,...). Therefore,

ne=l
(L, ») has the saturability property if and only if 8 is discrete.
THEOREM 3. If % has the saturability property, then Z also has this
property.
Proof. Let {f,} be a non-decreasing sequence in L with f, <feL
for n =1,2,... Given ¢> 0, choose a ge L with N(f—g)<¢/6 and

a non-decreasing sequence {g,} in L with N(f,—g,) < /6 for n =1,
2, ... (see Lemma 1). It follows from the inequality

[fn—9u A9l < | fo— gl + 19l

that N(f,—g.Ag) < ¢/3. Since {g,Ag} is a monotone order-bounded
sequence in L, by Proposition 5, there is an n, such that

N(garg—9gmrg)<e/3 for all n,m>n,.

Hence N (f, —fn) < € for n, m > n,. Thus {f,} is a Cauchy sequence
in L*, and the assertion follows from Proposition 5.

Definition 5. A real integrable space % has the Lebesque property if

@) IfJ<g (n=1,2,..) and limf, = f imply

n—00

ﬁ‘ L and hmv(lfn—fl) =0 (fn’ geL)'

Clearly, the Lebesgue prdperty implies the saturability property,
but not conversely (see the Example in [13] with X = R; cf. also Pro-
position 6 below).

Definition 6 (cf. [7], p. 149). A subfamily F of RS is said to be
o-reticulated if the pointwise limit of any non-decreasing (non-increasing)
upper (lower) bounded sequence in ¥ belongs to F.

Since
n+m
limf, =f 1mphes lim|lim?t V. f =7,
n—»00 n—>00 M—>00 k=n

we have
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Remark 3. A Riesz subgroup F of RS is o-reticulated if and only
if the pointwise limit of any convergent order-bounded sequence in F
belongs to F.

PROPOSITION 6. & has the Lebesgue property if and only if it has the
Daniell property and L 18 o-reticulated.

Proof. The necessity follows from Remark 3.

Sufficiency. Suppose f,, ¢, f are as in condition (L). By Remark 3,
fe L. Put

n+m

g = lim4 V |f,—fl formn=1,2,...

m—o00 k=n

Clearly,
lim|g, = 0.
n—>00

Moreover, since L is o-reticulated and g, <g-+g, we have g,e L.
Hence

lim|»(g,) = 0.

The inequality |f, —f| < g, yields
lim »(|f,—f1) = 0.
n—>00

THEOREM 4. For a real integrable space & the following four conditions
are equivalent:
(i) & has the Daniell property and L is o-reticulated;
(ii) & has the saturability property;
(iil) Ifal <f (v =1,2,...) M"dn;lmifn =0 imply

lim »(1f,]) =0 (fa,fe L)

(Ba,na.ch’s_ property; see [2], p. 322);
(iv) & has the Lebesgue property.

Proof. It follows from Theorem 2 and [Proposition 6 that (i) im-
plies (iv). Obviously, (iv) implies (iii), which, in turn, implies (ii). Final-
ly, by Theorem 3 and Corollary 2, (ii) implies (i).

Given a family F < RS, we denote by F° the smallest o-reticulated
Riesz subgroup of RS containing F.

Let ¥ = (L,») be a real integrable space such that I° = L. Put
Z°= (L°,»"), where »’=7y|(L°)*. Clearly, #° is a real integrable space.
From Theorem 4 and Remark 3 we obtain

COROLLARY 3. If # has the saturability property, then £° has the Le-
besgue property. a |
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The next theorem establishes a kind of minimality of #° in the
family of all real integrable spaces extending ¥ and having the Lebesgue
property. The proof of this theorem is based upon the following lemma,
which is an analogue of the theorem on the smallest monotone class con-
taining a ring of sets:

LemMA 2. If F is a Riesz subgroup of RS, then F° is the smallest o-reti-
culated subfamily of RS containing F.

Proof. Let G = RS be the smallest o-reticulated family containing
P, and put H(f)={heRS: f—h,h—f,fvhe@} for fe RS. Clearly, he H(f)
if and only if f< H (h). Moreover, as easily seen, H (f) is o-reticulated. Finally,
F c H(f) for fe F. It follows that ¢ < H(f) for fe F. Hence F < H(g)
for ge G, so that G = H(g) for ge G. This shows that @ is a Riesz subgroup
of RS. Thus @ = F".

THEOREM b. Let £, = (L, v,) be a real integrable space having the
Lebesgue property. If & = (L, ») i8 a real integrable space such that L < L,
and v = vy|LT, then L° c L, and +° = vy|(L°)*, where £° = (L°,°)
18 as in Corollary 3.

Proof. In view of Remark 3, L, is o-reticulated, so that L° = L,.
Since .# has the saturability property, #° has the Lebesgue property by
Corollary 3. Put

& = {fe I°: »(If) = %(IfN)}.

By assumption, @ > L. Moreover, @G is o-reticulated. It follows
from Lemma 2 that G = L°.

4. Daniell spaces. The main aim of this section is to give a new proof
of Pellaumail’s extension theorem for Daniell spaces [10] (see also The-
orem 6 below). Our proof is based upon some properties of real integrable
spaces established in Section 3.

We begin with the following

LEMMA 3. Let F be a Riesz subgroup of RS. If

9, fac ¥ amd  g< o,

n=l

then there are g,e F* such that

g=2.q,, and ¢,<f, fornm=1,2,...

n=1

Proof. Put g, = gaf, and

In =(g/\ Z“‘f,,) ——(y/\ ”2—: f,,) for n =2,3,...
k=1 k=1
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Let (Y, |-]) be an abelian seminormed group. Consider & pair (L, I),
where L is a Riesz subgroup of RS and I: L — Y is additive (i. e., I(f+g)
=I(f)+1I(g) for all f,ge L). Put

v(f) = sup{|I(g)l: ge L* & g<f} for feL*.

Clearly, »(0) = 0, » is monotone and subadditive. Up to Remark 5
below we additionally assume that »(f) is finite for all fe L*. (This is
trivially satisfied if |-] is bounded.)

Remark 4. We have |I(f)| <2»(|f]) for fe L.

Note. If £ = (L, v) is a real integrable space and (Y, |-|) is an abelian
complete normed group, then I is an integral on .# with values in Y (see
Definition 2 and Proposition 1 of [13]).

PROPOSITION 7. £ = (L, v) i8 a real iniegrable space if and only if,
for any sequence {f,} = L* with

Hm{f,=0 and D v(fu—far) < o,
n—00 n=1
we have
lim |I(f,)| = 0.

n—o00

Proof. Since

o = D (Fe—Fira)

k=n
provided that
limf, =0,

n—»00

the necessity follows from the inequality |I(f)| < »(f) for fe L*.
Conversely, let

F<Dfu and  Yo(f< oo (f,fue L),

Choose a ge Lt with ¢ <f, and take a sequence {g,} = L* (corre-
sponding to ¢ and f,) as in Lemma 3. Since

m m m+1
lim}(g— D'g,) =0 and (9— Y'g.) — (90— D o) = Ims2 < Fmsrs
m—»00 n=1 n=1 n=1

the assumption implies

lim | Z{g— Y.} = 0.
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Hence

(@) =lim [ 1 2;’9,, |< |I<g,.,)| < (-
n= l
It fqllows that

() < D) v(fa)-

n=1
COROLLARY 4. & = (L, ») is a real integrable space having the Fatou
property if '
lim|f, = 0 implies im |I(f,)|=0 (f,e L*).
n~>00

n—o00

Proof. By Proposition 7, % is a real integrable space. Suppose that
fofoe LT and f<lim1tf,.

n—»00

lim |I(f—f,Af)l =0,

Then we have

and so

It follows that .2 has the Fatou property.
COROLLARY 5. # = (L, v) 18 a real integrable space having the Dantel

property if and only if
gn <fn and Lim| f, = 0 imply Lim|I(g,)| =0 (gn, fre L¥).
n->00

n—»o00
Remark 5. Suppose & = (L, ») is a real integrable space. Then .Z
has the saturability property if and only if

Zf,. </ implies Lim|I(f,)| =0 (fy, fe I*).

n=1
The starting point for Pellaumail’s generalization of the classical
Daniell theory are the following definitions (see [10], p. 1228).
Let Y be an abelian Hausdorff topological group.

Definition 7. A pair 2 = (L, I) is a Danzell spa,ce if

(a) L is a Riesz subgroup of RS,

(b) I is an additive mapping from L into Y such that
lim} f, = 0 implies imI(f,) = 0 (f,e L*).
n—»00 n~»00

Definition 8. A Daniell space 2= (L, I) has the saturability prop-
erty if

(8 Zf,, </ implies kmI(f,) =0 (fa, fe L*). .

ne=1
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LEMMA 4. Let 2 = (L, I) be a Daniell space having the saturability
property. There exists a group topology T on L° with the following properties:
(i) The ‘mapping @: L’ — L°, defined by o(f) =f* for fe L° is
T-CONtinuUous. ‘
(ii) If {f.} is an order-bounded sequence in L° and lim f, = f, then
N—>00

z-lim f, = f.
n—>00

(iii) L s z-dense in L°.

(iv) I is continuous with respect to the topology induced on L by -.

Proof. By Theorem 4, for any »: Lt — R* such that (L, ») is a real
integrable space having the saturability property, we have L° c L. Let
7 be the lower upper bound of the family of those topologies on L° which
are generated by all » with the above property (see [13], p. 912). Clearly,
7 1S a group topology. Moreover, it is easy to see that (i) holds (cf. the prootf
of Proposition 3). Assertioun (ii) follows directly from the implication (ii)
= (iv) of Theorem 4.

From (i), (ii) and Remark 1 we infer that the z-closure of L is a o-reti-
culated Riesz subgroup of RS. Hence (iii) follows.

Finally, to establish the continuity of I, it is enough to show that,
for each continuous bounded seminorm |-| on Y, the mapping |I|: L - R*
is continuous (see [6], p. 68 and 76). Let » be associated with |-| according
to the construction following Lemma 3. By Corollary 4 and Remark 5,
(L, ») is a real integrable space having the saturability property. Hence
Remark 4 yields the desired continuity of |I].

Definition 9. A Daniell space 2 = (L, I) has the Lebesgue property if
(L) fal<g (n =1,2,..)) and lim f, = f imply

feL and irgl(fn) =I(f) (farge L).

THEOREM 6 ([10], p. 1234). Let Y be a sequentially complete abelian
Hausdorff topological group. A Daniell space 9 = (L, I), where I: L - Y,
has the saturability property if and only if there exists a mapping I°: L° - Y
such that I°|\L = I and 2° = (L°, I°) 18 a Daniell space having the Lebesgue
property. The mapping 1° satisfying the listed conditions, if exists, is unique.

Proof. The sufficiency is obvious.

Necessity. Denote by Y the completion of Y. By Lemma 4 (iii)
and (iv), I can be uniquely extended to a z-continuous additive mapping
I°: L° - Y (cf. [3], Chapter 3, Section 3, No. 3 and 5). Lemma 4 (ii)
shows that 2° = (L°, I°) has the Lebesgue property. Hence it remains
to prove that I°(L°) = Y. Put G = {fe L°: I°(f)e Y}. Clearly, L < G.
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Since, for any sequence {f,} = L° such that
fa<gel’ (I’29<f,) and limtf, =f (im}f, =f),
Nn—>oo N—>00

{I°(f,)} is a z-Cauchy sequence, @ is o-reticulated. By Lemma 2, it now
follows that G = L°.

A similar reasoning also establishes the uniqueness of I°.

Let us note that an analogue of Theorem 5 for Daniell spaces holds
true. The proof is essentially the same.

THEOREM 7. Let 2, = (L,, I,) be a Daniell space having the Lebesgue
property. If 2 = (L, I) i a Daniell space such that L c L, and I = 1,|L,
then L° <« L, and I° = I,|L°, where 2° = (L°, I°) is as in Theorem 6.

5. Beppo Levi and additivity properties. In this section we study two
properties of real integrable spaces which are stronger than the saturabi-
lity property.

Definition 10 (ef. [1], p. 69). A real integrable space £ has the
Beppo Levi property if

(BL) supv(z fa) < oo implies lim»(f,) =0 (f,e L*).

The Beppo Levi property resembles the so-called Axiom A intro-
duced for Banach spaces by Gould [5], p. 686 (cf. also condition (0) in [9],
p. 801, or in [11], p. 106). Let us also note that, under the name “semiad-
ditivity ”, a similar property has been considered by Schéfke [12], p. 160
and ff. Our terminology is justified by the forthcoming Proposition 8.

Obviously, if . has the Beppo Levi property, then it also has the
saturability property. The converse fails to be true in general.

Example 4. Suppose (8, 2, u) is a (positive) complete finite measure
space. Let L be the family of all measurable real-valued functions on
8, and put

»(f) = [fAl du  for fe L*.
J .

Clearly, (L, ») is a real integrable space having the Lebesgue prop-
erty, but it has not the Beppo Levi property unless x(S) = 0.

The proof of the following proposition is analogous to that of Pro-
position 5:

PROPOSITION 8. & has the Beppo Levi property if and only if every
monotone sequence {f,} = L bounded in the seminorm N i8 a Cauchy sequence
in L*.

THEOREM 8. If £ has the Beppo Levi property, then £ also has this
property.
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Proof. Suppose that

fae L* and supv(an)<oo

n=l1

By Proposition 3, there are g,e LT with N(f,—g,) < 2~". Since

supv(Zy,.) Sup"’(an)""ZN(fn 9n) < o0,

Ne=] na=] ne=l
we get
lim»(g,) = 0.
n—-»o0o0
Hence
lim#%(f,) = 0.
n—>00

THEOREM 9. Let £ be a real integrable space'having the Beppo Levi
property. If

{fa} = L, supN(Vlnt)<°° and }gaf,.=feR",

n=1

then
feL and LmN(f,—f) =0.
n—>00

Proof. Put

) m
g = lim V |fn|

m—-o00 n=l1
Theorem 8 and Propositions 8 and 1 yield ge L. Now the implication
(ii) = (iv) of Theorem 4 gives the desired result.
Definition 11. A real integrable space % has the additivity property if

(A) v(f+9) =»(f)+»(9) (f,geL").

It follows from Proposition 3 that if & has the additivity property,
then % also has this property. Clearly, % has the Beppo Levi property
provided that it has the additivity property. The converse need not hold.

Example 5. Suppose (8, X, #) is @ measure space. Put L = L (u),
where 1< p < oo, and

o(f) = ([fedu)” for feL*.

(L, v) is a real integrable space having the Beppo Levi property.
(This follows from Proposition 14 and Theorem 2 of [4], Section 12, p. 224,
and Proposition 8 above; cf. also Theorem 3.1 of [5].) It has not the addi-
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tivity property unless there are no disjoint sets A, Be 2 with 0 < u(4),
#(B) < oo.

The author is indebted to Dr. Z. Lipecki for many valuable sugges-
tions and improvements.

Added in proof. Some interesting results related to the subject
of the present paper (especially of Section 4) can be found in a recent
work by N. J. Kalton, Topologies on Riesz groups and applications to
measure theory, Proceedings of the London Mathematical Society (3) 28
(1974), p. 253-273.
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