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THE FIXED POINT PROPERTY FOR SET-VALUED MAPPINGS
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In this paper we introduce componentwise continuous (c.c.) multi-
functions (see the definition below) and we use these functions to obtain
some fixed point theorems which generalize most known fixed point
theorems for trees, dendroids, and A-dendroids. In particular, we obtain
the following characterization of trees: a Hausdorff continuum X is
a tree if and only if every c.c. function from X into itself has a fixed point.
C.c. functions need not have the fixed point property for dendroids, but
they have an almost fixed point (as have refluent mappings). Fans and
smooth dendroids have the fixed point property for c.c. closed mappings.
If X is a A-dendroid, we show only that point connected c.c. functions
on X have an almost fixed point (for all c.c. functions it is an open question).

These results imply those of Wallace, Ward, Marika, En-Nashef,
Smithson, Muenzenberger, and of some others; they imply the fixed
point property for A-dendroids and closed mappings which preserve
continua (in the metric case). We conclude also the existence of a fixed
point different from a given end-point (not belonging to a given end-con-
tinuum for A-dendroids). Some results on arclike continua and an almost
fixed point property for c.c. mappings are also obtained.

All spaces considered in the paper are Hausdorff compact. The results
used to manipulate nets and nets of sets can be found in [3], [5], and [15].

1. Preliminaries. A multifunction F: X — Y denotes a point-to-set
correspondence such that F(x) is a nonempty subset of Y for each z € X.
A multifunction F : X — Y is said to be

(i) point closed if F(x) is closed for each z € X;

(ii) point connected if F (x) is connected for each x € X

(iii) closed if F'(A) is closed for each A closed in X;

(iv) continuum-valued if F(A) is a continuum for each continuum
Kc X,

(v) refluent if for each subcontinuum K of X and for each component
C of F(K) we have F(z)nC # O for each x € K (see [4], p. 524);
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(vi) lower semi-continuous (1.s.c.) if F~'(B) = {x e X: F(z)NB # @}
18 open for each open B < Y;

(vil) upper semi-continuous (u.s.c.) if F~!(B) is closed for each closed
BcY;

(viii) continuous if F is both l.s.c. and u.s.c.

We say that F: X - Y is componentwise continuous (c.c.) if » =
lim{z,} implies that

(A) Ls{C}NF(x) # B, where O, is a component of F(z,) for each o;

(B) every component of F (x) intersects Ls {F(z,)}.

Using the fact that every u.s.c. and point closed multifunction is
closed (see [14], 9.6, p. 180) and making use of Theorems 1 and 2 in [7],
p. 61-62 (one can extend these theorems to the nonmetric case), it is
easy to show that

PROPOSITION 1.1. The following implications hold for multifunctions
and none can be reversed:

ls.c., l.s.o.,
point connecled, —> point

closed connected
/ | 0-C.s

single- %.8.0.y ¢.c., point /rpoint oon-
-valued, —> point connected, —> connected, nected
conlinuous point closed cloged c.c.
\ continuum-
\L conlinyuous, refluent, -valued \

point closed ——> wu.s.c.,
point cloged —>  refluent

One can also show that every point closed, u.s.c. and refluent multi-
function from a locally connected space is c.c. Some other properties of
c.c. multifunctions can be established. In particular, the composition of
two closed c.c. multifunctions is c.c., and the closure of c.c. multifunc-
tions is also c¢.c. In what follows we use only the following

PROPOSITION 1.2. Let F: X - Y be a c.c. multifunction and let
J: X > Z be a single-valued continuous function. Then fo F is c.c.

In fact, let # = lim {z, : ¢ € 2}, where # € X and z, € X for o belonging
to an arbitrary directed set 2, let C, be a component of fo F(z,) for o € X,
and let y, € F(x,) be such that f(y,) € C,. For ¢ € £ take a component
K, of F(x,) such that y, € K,. Since the function F is c.c., there is a point
YoeLs{K,: 0 e Z}nF(x). Let U be an open neighbourhood of y, and

2y ={ocel: K,nU #0}.
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For o €2y take y,y € K,nU. Let the set
II = {(o, U): 0 €y, U is a neighbourhood of y,}

be directed by the relation < such that (o, U) < (o', U’) if and only if
U' < U and o< ¢'. Then

Yo =lim{y, y: (o, U) € II}.
Since f is continuous, it follows that
f(yo) =1lim{f(y,p): (o, U) e I} = Ls{f(K,): o €2} = Ls{C,: o€ X}

and f(y,) e foF(x). Therefore, condition (A) of the definition of ec.c.
multifunction is satisfied.

Now, let C be an arbitrary component of fo F(x) and let K be a com-
ponent of F(x) such that f(K) < C. Since F' is c¢.c., we have

Ls{F(x,): 0 € Z}INC #0O.
Similarly as above, if y, € Ls {F(x,): 0 € Z}NC, then
f(yo) e Ls{fo F(x,): o e Z}nf(0).

Therefore foF is c.c.
Let F: X — Y and put, for each z € X,

F*(z) = N{F(U): U is a neighbourhood of z},
F.(w) = ({F(0): C is a component of = in a neighbourhood of z}.

It is easy to show that F* is a point closed u.s.c. multifunction and that

if ¥ satisfies condition (A) of the definition of c.c. multifunction, then F(x)
intersects each component of F*(z) for x e X. Therefore,

PrOPOSITION 1.3. If F i8 c.c., then F* is c.c., u.8.c., and point closed.
Moreover, if F is point connected c.c., then F* is continuum-valued.

Similarly, one can show that if X’ is a locally connected subcontinuum
of X, then F,|X’ is u.s.c. and point closed. Furthermore

PrOPOSITION 1.4. If F: XY is refluent and X' is a hereditarily
locally commected subcontinuum of X, then F,|X' 18 refluent, closed, and
u.8.c.

It remains to prove, by 9.6 in [14], p. 180, that F,|X’ is refluent.
Let K be a subcontinuum of X’ and let @ be a component of F,(K). Then
Q = (N{V.}, where {V } is the family of open and closed sets in Fy(K)
containing @. Fix ¥, and consider the set

A,={{z e K: Fy(x)nV, +O}.

Since V, is closed in F,(K) and F.(K) is closed in Y, we infer that
A is closed in K by the upper semi-continuity of F,|X’. Now, by the
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normality of Y, there are open disjoint sets G and H in Y such that V, < &
and F,(K)\V,< H. Let x,e A. There is a neighbourhood U of z, in X

such that if C is a component containing z, in U, then F(C) < GUH.
Moreover, F(C)NG # B because F,(x,) < F(C). Therefore, there is a

component R of F(C) which is contained in @. Thus, if ' is a component
of CNnK containing x,, then F(r)NnG # @ for x € C' by the refluence
of ¥. Consequently, F,(z)NnG # @ for z € C'. Since GNF,(K) = V,, wo
have F,(x)NnV, #0 for z € ¢'. But K is locally connected, and so C’ is
a neighbourhood of z, in K which is contained in A. Hence A is also open,
which implies A = K. Therefore F, is refluent.

Recall that F: X — X has the fixed point z if © € F'(x). We say that
x € X is an almost fized point of F if for each neighbourhood U of x in
X we have UNF(U) # 9.

For every point a and for every subcontinuum K of hereditarily
unicoherent continuum X there is a unique minimal continuum in X which
intersects sets {a} and K; we denote it by aK. In particular, ab denotes
the unique continuum irreducible between a and b. We use also the following
notation: I(a, b) = {x € X: b = ab}; v <, y means pz < py; and M,(x)
={yeX: v<, ¥y}

In the next sections we consider the following classes of hereditarily
unicoherent continua: arcs, trees, fans, dendroids, smooth dendroids,
A-dendroids, arclike continua, and treelike continua. Recall that A-dendroid
(dendroid, tree) is a hereditarily unicoherent and hereditarily decomposable
(arcwise connected, locally connected) Hausdorff continuum. A (generalized)
arc is a continnum which has exactly two nonseparating points. If a point
P of a dendroid X is the common end-point of three (or more) arcs in X
whose only common point is p, then p is called a ramification point. A den-
droid X having exactly one ramification point p is called a fan and p is
called a top of X. A dendroid X is said to be smooth at p if the order <, is
closed. We say that X is smooth if there is p € X such that X is smooth at p.

A metric continuum X is said to be arclike (treelike) if for each ¢ > 0
there exists a (single-valued) continuous function f from X onto [0, 1]
(onto a metric tree D) such that diamf~'(¢) < ¢ for t e [0, 1] (for ¢ € D,
respectively).

2. Fixed point theorems. First we deduce some consequences from
the assumption that continuum has the fixed point property for some
class of multifunctions.

THEOREM 2.1. If a continuum X is not hereditarily unicoherent, then
there i3 a point connected, closed u.s.c. (1.s.c.) multifunction F from X into
itself which i3 fixed point free.
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Proof. In the Cartesian coordinates in the plane we put D =
{(@1, @,): 2} + a3 <1} and
81 = {(%1, 22): 23 +2; =1 and x,> 0},

8; = {(#,,25): #}+a5 =1 and 2,<0}, and &8 = 8,US8,.

If the continuum X is not hereditarily unicoherent, then there are
continua M, and M, such that M,NnM, = A,UA,, where sets 4, and 4,
are closed, nonempty, and disjoint. By Tietze’s theorem there is a con-
tinuous single-valued mapping f from X into D such that f(4,) = (—1, 0),
f(4,) =@, 0), f(M,) =8,, and f(M,) = S,. Moreover, there is a contin-
uous point closed and point connected multifunction G from D onto S
such that G(z) = x for x € S (see [8], p. 423).

Now, let U, and U, be open and disjoint subsets of D such that
(1, 0) e U, and (—1, 0) € U,, and let a; be an arbitrary point of A; for
1 =1,2. We define H: § - M,UM, as follows:

H(z) = { M, if ze8,\(U,VU,),

a; if z e U,.

Taking F(x) = H (G(f(w))) for x € X we obtain a point connected,
closed and u.s.c. multifunction from X into X. It is fixed point free because
F(X)<c M\VUM,, F(A,) = a,, F(4,) = a,, F(M,) < M,, and F(M,) < M,.

If V, and V, are open subsets of X such that A, < V,, A, < V,,
and ¥V,n7V, = @, then a multifunction F': X - X defined by

M,uM, if reX\(M,VM,),
F'(x) = { M, if #e M,\(V,UV,) and i #j,
a; if reV, and ¢ #j

is a point connected, closed and l.s.c. multifunction from X into itself
which does not have a fixed point. The proof of Theorem 2.1 is complete.

If in Theorem 2.1 we assume additionally that X is metric, then we
can construct ¥ which is continuous (cf. [8], Theorem 2, p. 422). Such
an implication is not true for Hausdorff continua. We have

Example 2.1. The closed ordinal space [0, 2] consists of the set
of all ordinal numbers less than or equal to the first uncountable ordinal
2, together with the order topology. We obtain a Hausdorff arc A from
{0, 2] by placing between each ordinal a and its successor a+1 a copy
of the unit interval I = (0, 1) and we give A the order topology. We obtain
a space B from A by ¢ which identifies 0 with Q. Then B is a Hausdorff
continuum (circle) which is not unicoherent. Moreover, if F: B —- B
is a continuous point closed multifunction, then F has a fixed point.

In fact, let F be fixed point free. Then, in particular, ¢(0) ¢ F(¢(0)).
Consider the set R of all points # of B such that F(x) < B\{p(0)}
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and let 0 be a component of ¢ '(R) containing 0. Since F is contin-
uous, we have y < tp-l(F («p(y))) for each y € C. Let y, be the supremum
of C. Then y, # Q. Thus there is a countable sequence {y,} of points of
C such that lim{y,} = y,. For » =1,2,... the supremum of the set
¢ (P(p(y,))) is denoted by z,. From the continuity of F it follows that
lim {z,} e<p“(F (op(yo))). The choice of y, and y, implies 2 = lim{z,}
and 2, #* 2, which is impossible because A does not have a countable
local basis at Q.

THEOREM 2.2. If a continuum X has the fixed point property for c.c.
point connected multifunctions, then X is a tree.

Proof. First we have

(1) Every nmondegenerate subcontinuum K of X with the empty interior
separates X.

In fact, suppose that the set X\ K is connected and let @ and b be
distinct points of K. It is easy to check that the multifunction F: X -X
defined by

F(x) ={ (X\K)u{a} if zeK\ {a},
(XNEK)L{p} ifxr=a

18 point connected c.c. and F has no fixed point, a contradiction.

IK if e X\K,

(2) If K i3 a subcontinuum of X, then K has also the fized point property
for c.c. point connected multifunctions.

Indeed, let F: K — K be c.c. and point connected. Then

| K if e X\K,
G(2) —{F(w) if re K

is a c.c. point connected multifunction. If z € X is a fixed point of G, then
it is a fixed point of F.

(3) X s hereditarily decomposable.

It follows from (1) that X is decomposable. Similarly, every subcon-
tinuum of X is decomposable by (2).

(4) If K vs a subcontinuum of X, then K is arcwise connected.

In fact, let M be a subcontinuum of K which is irreducible between
« and y. It follows from (3) and from Theorem 2.7 in [6], p. 650, that there
is a decomposition 2 such that 2 is u.s.c., M /9 is a generalized are, and
each element of 2 has an empty interior. Combining this conclusion with
(1) and (2) we infer that 2 has degenerate elements, thus M is a generalized
arc, i.e. condition (4) holds.
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Now we will prove that
(5) X 1is hereditarily locally connected.

Suppose, on the contrary, that X is not hereditarily locally connected.
Then there is a nondegenerate subcontinuum K, of X and there is a net
{K,: o e 2} of subcontinua of X converging to K, such that for all ¢ and
¢’ in X either K, = K_, or K,nK, =0 and K,nK, = (see [20], The-
orem 3; cf. [7], Theorem 2, p. 269, for the metric case).

Now, let @ and b denote two distinct points in K, and let ab be an
arc in K, (cf. (4)) having a and b as its nonscparating points. For each
g € X take an are p,q, in X having p, and ¢, as nonseparating points and
such that p,q,nadb = {p.}, p,¢,NK, = {¢,}. We can assume (see [3],
(3.1.23), p. 172) that a net {p,: o € 2} is convergent to some point p and
that there is a nondegenerate arc cd in ab such that c< d<< d' < p (in
the order of ab) for some d’ and p, € d'p for each o € 2. Put

K = Lg(K.,Upaq..) vd'p.

Then the set K is connected. The multifunction ¥: X — X defined by

cd if # e X\cd,
F(x) =] Ku{c} if xecd\{c},
Ku{d} ifz=c
is point connected and c.c. Moreover, F has no fixed point, a contradiction.

It follows from Proposition 1.1 and Theorem 2.1 that X is hereditarily
unicoherent. Therefore X is a tree by (5). The proof of Theorem 2.2 is
complete.

Some characterization of trees follows from Theorem 2.2. To formulate
it we need the following

THEOREM 2.3. Let X be a tree, p € X, and let & multifunction F: X — X
be c.c. If 2y € X 18 such that xy <, Y, for some y, € F (x,), then there exists
an x € X such that z, <, x and z € F(x).

Proof. The set B ={r e X: 0, <, # and F(x)nM,(z) # @} is non-
empty because z, € B. Moreover, if there is no fixed point # of F such
that x, <, #, then R is closed.

Indeed, let # =lim{z,} and x, e R for each ¢. Then Ls{M,(z,)}
< M,(x) by Lemma (2.8) in [16], p. 96. Let {C,} be a net of components
of F(x,) with C,n M, (x,) # Q. Then C, =« M,(x,) for each o by Lemma 4 in
[21], p. 352. Therefore Ls{C,} = M,(x). Furthermore, Ls {C ,}nF (x) # O
by condition (A) of the definition of c.c. multifunction. Thus F(z)NM,, ()
# @, which means that z € R.

Now, let a be a maximum in R (sce [24], Theorem 1). Then we find
be F(a)nM,(a). Consider a net {a,} such that a = lim{a,} and a <,a, <, b
for cach o. Denote by C a component of F(a) containing b. Since F is
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c.c. (condition (B)), there is a ¢ e CNLs {F(a,)}. Points b and ¢ belong to C,
thus abNac = ad for some d # a (otherwise, a € C = F(a)). We can assume
that a, € ad for each ¢. Since the set M,(a)\ {a} is open (see [25]), there
is an open connected subset U of X such that c e U = M,(a) and Unaa,
= @ for some a, such that a <, ay <,d. There is o such that F(a,)nU %O
and a, € aa,. The construction implies a <, a, and F(a,)NM,(a,) #D.
Therefore a, € E. Consequently, the point a is not a maximum of R, a con-
tradiction.

Applying Theorem 2.2 and putting £, = p in Theorem 2.3 we obtain

COROLLARY 2.1. Let X be a continuum. Then the following conditions
are equivalent:

(i) the continuum X is a tree;

(i) X has the fized point property for c.c. multifunctions;

(iii) X has the fixed point property for c.c. point connected multifunctions.

Corollary 2.1 implies (cf. Proposition 1.1) Theorem 1 from [22] and
Theorem A from [23]. As can be seen from the following example, a den-
droid need not have the fixed point property even for c.c. closed multi-
functions.

Example 2.2. Let (z, y) denote a point of the Euclidean plane R?
having x and y as its rectangular coordinates and let A (p, ¢) stand for
the straight-line segment joining p and ¢q. Put

B =-A((0’ 0)’ (1’ 0))’ c =A((1; 1), (17 0))’
A, = A((0,1/(n+1)), (1,1/m)) for n =1,2,...
and let

X =BuCulJ 4, and Y =ZXupX),
n=1
where ¢(x,y) = (L—a, —y) for (x,y) e R*. For each real ¢ consider
K(t) = {=,9): t<lyl}
and _
L(t) = {(x, 0): 2 <t or V1| < a}UC Ug(C)

and define multifunctions F: X -~ X and G: Y - Y by

BuCvu |J 4,, if (z,y) e A,\C,
F@,9) =1@,0 it (z,9) e,
CU(E(1—2)nX) it (z,9) e B\{(1, 0)}
and
B if (z,y) e Y\B,
G(z,y) =1 9(®,9) if (w,y) = (0, 0) or (1, 0),

Y (L () VE(42(1 —1))) if (¢,y) e B\{(0, 0), (1, 0)}.
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The space X is the so-called “harmonic brush”. It is easy to verify
that F is point closed, l.s.c., and continuum-valued, and that F has no
fixed point. Similarly, it is easy to check that Y is a dendroid and that
@ is a c.c. closed multifunction without a fixed point.

It follows from Corollary 11 in [1], p. 308, and from Ward’s lemma
(see [27], p. 924) that

PROPOSITION 2.1. Every increasing net {x,} (in the order <,) in a den-
droid X 1is convergent, and if x = lim{x,}, then x, <, x for each o.

We have the following result for dendroids:

THEOREM 2.4. Let a multifunction F : X — X from a dendroid X into
atself be such that F(A) is closed and F | A is refluent for each arc A = X. If
P ¢ F(p) and q € F(p), then there is a maximal point x (in the order <)
such that px npq # {p} and x is a limit of an increasing net {x,} such that
x e F(x,) for each o. ,

Proof. For ve X put H(z) = F(z)V () {F(s'2): &' <,}. Then
H (x) is compact for each # € X and (cf. Proposition 2.1) we have

(6) If {x,} i3 an increasing net and z, = lim {x,}, then Ls {H (x,)} < H (x,).

Put J = {r € X: there exists a minimal point ¢, € H(x) such that
z <, t, and H(y)Nyt, =G for each <,y <, t}. We will prove

(7)  If yo € p2, and 2z, € H(y,), then there i8 an x, € J such that y, <, x,.

Indeed, let K denote the set of all & € y42, such that H (z)Nnxz, #O.
The set K is nonempty because y, € K. Let #, = supK. Then z, € KNnJ,
i.e. (7) holds.

Let o be the family of all (in general transfinite) nets {z,} in J satis-
fying the condition , <, #,,, for each a in-its domain. It follows that if
{z.} is in o, then @, <, @<, ...<,®,<,... We order & partially in
the following manner. If both {z,} and {y;} are elements of </, then {r,}
preceds {y,} provided {z,} is an initial segment of {y;}. Clearly, if € is
a chain in &/, then the union of ¥ is again in /. Thus, by Zorn’s lemma,
& contains a maximal element. Let € = {x,} be a maximal element in .o/
and a = sup {r,}. Then

(8)  There is a point y, such that 1, <, Y, for each a and y, € H(y,).

If a ¢ €, then a = t,, where i, = lim {t, }. But ¢, e H(x,), so t, € H(a)
by (6). If a € ¥ and a<,1,, then there is an increasing met {z,} such
that a = lim {z,} and ¢, e Ls {F(2,)} by the definition of H. Since t, € H (a),
we can assume that ¢, € F(2,) for each o. For each o let C, be a component
of F(z,1,) containing ¢, and let

¢ =C¢..

5 — Colloquium Mathematicum XLV.2
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F is refluent, thus F(i,)NnC, # @ for each o. Hence F(t,)NC # O.
Let 2z be a point of this intersection. Then 2t, = C because C is a continuum.
If 2t,Nat, = {t,}, then we find y, € J such that ¢, <, y,, which contradicts
the maximality of ¢ (because ¥V {y,} € &). Therefore zt,Nat, = 2,1,
and z, #1,. So let us construct an increasing net {a,} in 2,7, such that ¢,
= lim {a,} and a, <, ?,. We have a, € 2,1, < 21, = C < C, for each ¢ and,
consequently, a, € H(at,). Let b, € at, be such that a, € H(b,). Since for
each y which satisfies a <,y <, t, we have H(y)Nnyt, =@, we conclude
that a,<<,b,<,t, for each 7. Therefore lim{a,} =lim{b,} =1¢,, thus
t, € H(t,), which follows from a, € H(b,) and (6).

From (6)-(8) we infer that there is a point = such that pznpq # {p},
e H(x), and & is maximal with respect to these properties, which is
equivalent to the thesis of Theorem 2.4 by the definition of the mapping H.

Theorem 2.4 is related to the results from [17]. From Proposition 1.1
and Theorem 2.4 we obtain easily Ward’s and En-Nashef’s results (see [4],
Theorem 3.5, p. 527; [27], Theorem 2, p. 926).

Moreover, from Propositions 1.1 and 1.4 as well as from Theo-
rems 2.1 and 2.4 we get

COROLLARY 2.2. Let X be an arcwise connected continuum. Then the
following conditions are equivalent:
(i) X ¢s a dendroid;
(ii) every point closed, point connected u.s.c. multifunction F: X - X
has a fized point;
(iii) every refluent multifunction F: X — X has an almost fized point.

For fans and smooth dendroids we obtain (cf. Example 2.2, the
multifunction F)

COROLLARY 2.3. If F: X - X 18 a c.c. closed multifunction from
a fan X into itself, then F has a fixed point.

Proof. Let p be a top of X. Suppose, on the contrary, that F has not
a fixed point. It follows from Proposition 1.1 and Theorem 2.4 that there
is a maximal (in the order <,) point « 5 p such that z is a limit of an
increasing net {z,} with z € F(z,) for each o. Take a component C, of
F(x,) containing . If py is a maximal arc containing pz, then ¢ = Ls{C,}
< zy. Therefore, the continuum C satisfies the equality Cnpz = {r}. But
F(x)NC # @ because F is c.c. Since x ¢ F(z), we infer from Theorem 2.4
that there is a point 2 in X such that zznwa # {r}, where a € F(z)nC
and 2 has the same property as x. This contradicts the maximality of z.

COROLLARY 2.4. If F: X - X 48 a c.c. closed muliifunction from
a smooth dendroid X into itself, then F has a fized point.

Proof. We proceed as in the proof of Corollary 2.3 taking only as
? a point at which X is smooth. It suffices to check that ¢ = Ls{C,}
has only the point z in common with pz. In fact, suppose that ¥ e C npz.
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Then there is a net {y,} such that y =1lim{y,} and y, € C, with ¢, > 0.
Since X is smooth at p, we have Lim {py,} = py, but 2 € Lim {py,}, a con-
tradiction.

The class of A-dendroids contains trees and dendroids (see [1], Corolla-
ry 11, p. 308). For this class of continua we will prove only the following

THEOREM 2.5. Let X be a A-dendroid and let a multifunction F: X - X
map continua onto continua. Assume that F has the following property:

(*) If se F(r)nrF(r) and {R,} i3 a decreasing family of continua
which contain no fized point of ¥ and if re R,NnF(R,)< R, < r8 and
R=N\R,< I(r,8), then F(R)nR +* 9.

Then for each p and q € F(p) there 18 a point v € X such that x € F (x)
and 1(p,x) < I(p, q) (pxnpq # I(p, %))

Proof. Let K be a subcontinuum of X. Put

#(a, K) = {ab:I(a, b) < K and b'F(b')nab < I(b, a)
for some b’ e I(b, a)}.
Then
(9) If b¢ F(b) and r € F(b)NbF (b), then there i8 an x € br\{b} such
that bz € #(b, I(b,r)) and either I(z,b)NF(I(z,b)) #O or I(b, x)
= I(b, 7).

In fact, we can assume that br fails to contain a fixed point of F'.
There is a descending sequence {Q,} of subcontinua of br such that I(b,r)
=(@s and @; contains I(b, r) in its interior with respect to br (see [6],
P- 650). If there is a § such that b ¢ F(Q;), then F(Q,)NI(b,r) = @ because
F(Q;) is a continuum containing r. Therefore, there is an a > g such that
F(Q,)nQ, = . Taking x e Q,\I(b, r), we get bz € Z(b, I (b, r)) and I(b, &)
= I(b,r). If for each § we have b e F(Q;), then F(I(b,r))nI(b,r) #©O
by (). Thus be F(I(b,r))nI(b,r) because F(I(b,r)) is a continuum
containing the point r. Hence

I(b,r)e¥ ={R: R is a continuum
such that b e RNF(R) < R < I(b, r)}.

By Zorn’s lemma and condition (%) there is a minimal element R,
in €. Since b € F(R,), there is a point « € R,\ {b} such that b e F(z);
the image of the continuum bz under ¥ contains b and 7, thus B, = bz
and for each y € I (x, b) there is a 2z € b» such that ¥ € F'(2). From the mini-
mality of R, we infer that zeI(x,b), whence I(z, b)nF(I(x, b)) +# @,
i.e. condition (9) holds.

Now let us suppose that there is no # € X such that = € F(x) and
ar € Z(a, K). Then the family #(a, K) is inductive, i.e.

(10)  If {ab,} is a nested family of elements of #(a, K) and b = lim {b,},
then ab is an element of #(a, K) with ab, < ab for each a.



238 T. MACKOWIAK

According to Proposition 1 in [9], p. 61, it suffices to.show that there
is a point b’ in I (b, a) such that b’ F (b')nab < I(b, a). I I(b, a)nF(I(b, a))
# @, then the required condition is obviously satisfied. Now we assume
that I(b, a)nF(I(b,a)) =@ and let r € F(I(b, a))nbF(I(b, a)). Suppose,
on the contrary, that rbnab # I(b, a). Then rbnab is a continuum such
that its interior in ab contains I(b, a). Therefore, we can assume that
b, e rbNab for each a.If g, is fixed, then ab,, € Z(a, K) and I(b,,, a)Ub, b
is a continuum. Hence b, € F(I(b, , a)Ub, b) for each a. Thus

b e F(I(b,, a)ub,b)N(I(b,, a)ub,b) for each a.
From condition (*) we conclude that if R, = I(b,, a)Ubd,b, then
F(NRJNR, # D. But ("R, = I(b, a), a contradiction.
Condition (10) and Zorn’s lemma imply

(11) If #(a, K) # O and there is no fized point x of F with axz € #(a, K),
then there is a maximal element in #(a, K).

Condition (9) and Proposition 1 in [9], p. 61, imply
(12)  If ab is maximal in P(a, K), then I(b, a)nF(1(b, a)) +~ O.

Consider the following family #" of subcontinua of X: @ € #° pro-
vided (i) QN F(Q) # @ and (ii) if K’ is a proper subcontinuum of @ and
a'b e ?(a’, K'), then a'b’ = Q. From (12) we conclude

(13)  If ab is maximal in #(a, K), then I1(b, a) e #'.

Let {W,} be a decreasing family of elements of %" none of which
contains a fixed point. Then

(14) W=(\W.e¥.

Obviously, we must only show that F(W)n W # @. Suppose, on
the contrary, that F(W)NW =@ and let be W and r € F(b)NnbF(b). It
follows from (9) that #(b, I(b, r)) # @. Conditions (11) and (12) imply
that there is an « such that I(b, ) < I(b,r) and F(I(z, b))nI(x,d) + O.
If I(xz,b)NnW # O, then bx =« W because X is hereditarily unicoherent
and W is a continuum. Thus we can assume that I(z,b)nW, =@ for
each a. If for each a there is a g such that # > a and W;Nbz is not contained
in I(b, ), then I(b, x) is a proper subcontinuum of W, for each a. Since
bz e #b, I(b, x)) and W, e#, we infer that bx = W, for each a. Thus
bz < W, but I(x,b) < bxand I(z, b)nF(I(x, b)) # . Therefore WNF (W)
# @, a contradiction. Hence we can assume that W,nbz < I(b, z) for
each a. We also obtain a contradiction if for each a the set W, \(W,Nbx)
is nonempty. In fact, if a € W,\(W,Nnbz), then taking a continuum ab’
in W, irreducible between a and W,Nnbx we conclude that ax = ab’Ubz is
in g'(a, I(a, b’)), but I(a, b’) is a proper subcontinuum of W,, thus ax < W,.
As above, this contradicts the assumption that F(W)n'W = @.
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Finally, we can consider only such W, for which W,< I (b, z)< I (b, 7).
The set F(W,) is a continuum such that F(W, )NW, # @ and r € F'(b)
< F(W,). Consequently, b ¢ W,nF(W,) < W, < I(b,r) for each a. Con-
dition (*) implies that F(W)nW # @, i.e. (14) holds.

Now, let p e X\ F(p) and q € F(p). By condition (9) there is a b such
that pb e #(p, I(p, q)). Suppose, on the contrary, that there is no x e X
such that = € F(x) and px € #(p, I(p, q)). From condition (11) it follows
that there is a point ¢ such that pc is maximal in #(p, I(p, q)). But then
I(c,p) e# (cf.(13)) and I(c, p) does not contain a fixed point of ¥. There-
fore, there is a minimal element @ of " in I (¢, p) by (14) and Zorn’s lemma.
Since QNF(Q) # B, by (9) we obtain #(a’, K') # @ for some a’ €@ and
a proper subcontinuum K’ of @. Conditions (11) and (13) give a contradic-
tion. The proof of Theorem 2.5 is complete.

As a consequence of Proposition 1.3 and Theorems 2.1 and 2.5 we
obtain

COROLLARY 2.5. Let X be a hereditarily decomposable continuum.
Then the following conditions are equivalent:

(i) X ¢ a A-dendroid;
(ii) every poimt comnected, point closed wu.s.c. multifunction F: X - X
has a fived point;

(iii) every point connected c.c. multifunction F: X — X has an almost
fized point.

We also have

COROLLARY 2.6. If a closed continuum-valued multifunction F maps
a metric A-dendroid X into itself, then F has a fized point.

Proof. It suffices to show condition (*) of Theorem 2.5. Assume that
s e F(r)nrF(r) and let {R,} be a descending sequence of continua satisfy-
ing the assumptions of (*). Then rs < F(R,)forn =1,2,... Let {r,} be a se-
quence such that lim {r,} = » and r, e rs\I(r, 8). Forn =1, 2, ... we can
assume that r, ¢ B, and take 2, € B, with r, € F(2,). Similarly, we can
assume that {z,} is convergent, and then

z =lim{z,} e R = R,.
n=1

If RnF(R) =@, then r ¢ F(z). Sets 4, = {z,,: m > n}U {2} are closed,
and so are F(A,) because F is closed. Since r € F'(4,)\F(z), we infer that
r € F(z,) for some n. But also r, € F(z,). Since F'(z,) is a continuum, we
obtain 2, e rr, < ¥ (2,). Thus z, is a fixed point of ¥ in E,, a contradiction.

Theorem 2.5 and Corollary 2.5 imply known fixed point theorems
for A-dendroids (see [9], [11], [13], [29]). The following question remains
open:
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ProBLEM 2.1. Is it true that every refluent maultifunction F from
a Hausdorff A-dendroid into itself has an almost fixed point? (P 1236)

The positive answer to this problem will solve an open question about
the fixed point property for continuous point closed multifunctions on
A-dendroids (see [8], Problem, p. 423). For metric spaces A-dendroids
are contained in the class of treclike continua which fail to have a fixed
point property even for single-valued continuous mappings (see [2]),
but each treelike continuum is contained in a treelike continuum which
has the fixed point property for u.s.c. point closed refluent multifunctions
(see [10]).

3. Coincidence points. Using standard m-othods we obtain

THEOREM 3.1. Let c.c. multifunctions F and G map a connected Haus-
dorff space X into a (generalized) arc 1. Assume that one of the following
conditions holds:

(i) F is a point connected surjection;

(ii) 2 and G are both surjections.

Then there i8 an x € X such that F(zx)NnG(x) # D, i.e. F and G have
a coincidence point.

Proof. Let a, b be nonseparating points of I, let < be the natural
linear order in I from a to b, and let [¢, d] stand for a closed interval
in this order. Put

A = {x e X: there is t e F(x) such that G(x) < [t, b]}
and
B = {r € X: there is t € G(x) such that F(x) < [t, b]}.
Then
(16) The sets A and B are closed.

Indeed, let # =lim{z,} and x,e A for each o. Consider a closed
interval [a,, b,] which is a closure of some component of F(z,). We can
assume that G(z,) < [b,, b] because x,€ 4, and we can assume that
Ls{[a,, b,]} = [a,, b,] because I is compact. Since ¥ and @ are c.c.,
F(x)n[ay, by] #9 and every component of G(x) meets [b,, b]. If
toe F(x)N[a,y, byl, then t, does not belong to G(x). Therefore G (x) < [t,, b],
i.e. x € A. This means that A is closed. Similarly, B is closed.

If ¢ = inf F(«) (in the order <), then either ¢ € F'(x) or there is a d such
that ¢ < d and [c, d]\{c¢} = F(x) because F is c.c. The multifunction G
has the same property, and so

(16) X = AUB.

Since F is a surjection, there is an z, e X such that a € F(z,) and
then z, € A; in particular, A is nonempty. Similarly, in case (ii), B is
nonempty. Then ANB =@ by (15) and (16) because X is connected.
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Taking ¢ € ANB we obtain F (r)NG () # @. Assume now that B is empty
and (i) holds. There is an x; € X such that b € ¥ (x,) because F is a surjec-
tion. The set F(x,) is connected and z, € A (by (16)); consequently, there
is a ¢, with G(«,) < [¢,, b] = F(x,). The proof of Theorem 3.1 is complete.

From Proposition 1.2 and Theorem 3.1 we obtain easily the Theorem
from [28], p. 271 (see [18] for some other results in this direction), and
we get

COROLLARY 3.1. Every arclike continuum has the almost firved point
property for (i) c.c. point connected multifunctions and (ii) c.c. multivalued
surjections.

If Y is not hereditarily unicoherent or contains a triod (i.e., a con-
tinuum 7T such that ' = AUBUC, ANBNC = AnB = AnC = BN,
where A, B, and C are proper subcontinua of T), then it is easy to construct
a continuum X and two continuous single-valued mappings f and ¢ from
X into Y such that f(x) # g(z) for x € X and f(X) < ¢g(X). Therefore,
Theorem 3.1 and Corollary 2.1 imply

COROLLARY 3.2. A continuum Y is a (generalized) arc if and only if
for each continuum X and for each two c.c. point connected multifunctions
F,G: X > Y with F(X) <« G(X) = G(X) < Y there i3 a coincidence point.

The following question remains open:

ProBLEM 3.1. Does there exist an arclike continuum which has no
almost fixed point for some refluent multifunction? (P 1237)

4. End-continua and end-points. A subcontinuum E of a continuum
X is called an end-continuum of X provided that for each two points
a,b e X\E there is a continuum K such that {a,bd} < K <« X\E (see
[12]). We say that F: X — Y is biconnected if F maps continua onto
continua and for each continnum K < Y the set F~'(K) is a continuum
(see [19], p. 462). We have (cf. [12], Corollary 2)

THEOREM 4.1. If F is a biconnected multifunction from a A-dendroid
onto itself and E is an end-continuum of a subcontinuum @ in X such that
(@\E)NnF(Q\E) + O, then there is a fixed point of F belonging to X\ E.

Proof. It follows from the assumptions that there is a p € @ such
that pF(p) = Q\E. Let ¢qr be a continuum irreducible between Z and
PF(p) with geE and repF(p). If F(pF(p)VI(r,q)nl(r,q) =0,
then we find a fixed point x € X such that I(r,z) < I(r,F(p)) and
renrl’(p) # I(r, x) by Theorem 2.5 because F satisfies (*) (sce [13], Theo-
rem 3). If F(pF (p)VI(r, q))nI(r, q) # D, then we consider a continuum
irreducible between I(r,q) and F~'(I(r,q)) in I(r,q)UpF(p), and we
find a suitable fixed point of F~! (it is also a fixed point of F) because
F~! gatisfies (*) by the equality (F!)"'(K) = F(K).
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Theorem 4.1 generalizes some results of [12], [16], and [19]. For
dendroids, end-continua are exactly end-points. Theorems 2.3 and 2.4
imply other results in this direction, namely:

COROLLARY 4.1. If F': X - X is a multifunction from a tree X onto
itself such that F and F~' are c.c., then for each end-point e such that
F(e) # X there is a fived point x # e.

COROLLARY 4.2. If a multifunction F': X — X from a dendroid X onto
itself is such that F and F~' are both u.s.c., point closed and refluent, then
for each end-point e with F (e) # X there is a fixed point x +# e.
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