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In [1] the following existence theorem on generalized symmetric
Riemannian spaces was proved:

THEOREM A. For every even inleger n = 4 there i8 a generalized sym-
metric Riemannian space of order n diffeomorphic to R*~! and such that the
tdentity component of its full isometry group 18 solvable.

The main result of the present paper is an affine counterpart of this
theorem:

THEOREM 1. For every inleger m >3 there is a generalized affine
symmetric space of order n diffeomorphic to R*"~* and such that the identity
component of its full affine group is solvable.

1. Generalized affine symmetric spaces. All differentiable manifolds,
mappings, and tensor fields are supposed to be of class C*.

Let (M, V) be a differentiable affine manifold and let # € M be a point.
A symmetry of (M, V) at » is an affine transformation s, of (M, V) for
which # is an isolated fixed point. An s-structure on (M, V) is a family
{82}zem Of symmetries of (M, V), briefly denoted by {s,}. To every s-struc-
ture {s,} on (M, V) there corresponds a tensor field S on M of type
(1, 1) defined by 8, = (s,), , for all # € M. The tensor field 8 is called the
symmetry tensor field of {s,}.

Following Kowalski [5], a generalized affine symmetric space (briefly,
a g.a.s. space) is a connected affine manifold (M, V) admitting an s-
structure {s,} with the following properties:

(i) The map M XM — M, (»,y) —> 8,(y), is differentiable.

(i) For every z,y € M, 8,08, = 8,08,, Where z = 8,(y).

(iii) The symmetry tensor field S of {s,} is parallel, i.e., VS = 0.

The s-structure {s,} on (M, V) satisfying conditions (i)-(iii) is called
an admaissible s-structure.
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Property (iii) of admissible s-structures yields the following

PROPOSITION 1.1. For every symmelry 8, of (M, V) at a point o € M
there is at most one admissible s-structure {s,} on (M, V) such that s, = s,,.

An s-structure {s,} on (M, V) is said to be of order k if % is the least
positive integer for which (8,)* = id for all # € M. If there is a point x € M
such that (s,)* # id for all integers k, then {s,} is said to be of order oo.
The order of a g.a.s. space (M, V) is the least element k of the set {2, 3, ...
..., oo} for which there is an admissible s-structure of order k on (M, V).

In contrast to the Riemannian case, there are g.a.s. spaces of order
oo (cf. [3], Theorem 2, and [6]). Generalized affine symmetric spaces of
order 2 are nothing but the affine symmetric spaces. (Recall that, in this
case, there is a unique admissible s-structure {s,} of order 2 — it consists
of usual geodesic symmetries and § = —id.) Thus, g.a.s. spaces of order
k > 3 are those of special interest.

An automorphism of an s-structure {s,} on (M, V) is a diffeomorphism
f: M — M such that

fos, =s,0f, 1y =f(x), for each vze M.

If {s,} is an admissible s-structure, then property (ii) implies that
every symmetry 8, is an automorphism of the s-structure {s,}. The follow-
ing is the easier part of a basic theorem proved in [4] (cf. [6], Theorem B):

THEOREM B. Let {s,} be an admissible s-structure on a g.a.s. space
(M, V). Then:

1. The group Aut({s,}) of all automorphisms of the s-structure {s,}
18 a transitive Lie transformation group of M, which is a closed subgroup of
the full affine transformation group A(M, V).

2. If G is the identity component of Aut({s,}), o € M is a fived point,
and G, the isotropy subgroup of @ at o, then the homogeneous space M = G /G,
18 reductive in a canonical way and the connection V is the canonical con-
nection on G/G,.

COROLLARY. (a) Every g.a.s. space 18 a complete affine manifold.
(b) The connection V of every g.a.s. space (M, V) ig parallel, i.e.,
V has parallel curvature and torsion: VR = 0 and VT = 0.

2. Admissible automorphisms of transvection algebra. In this section
we construct an infinitesimal analogy to every admissible s-structure
on a simply connected and connected affine manifold (M, V). Necessary
conditions for the existence of admissible s-structures are given in the
Corollary to Theorem B. Hence throughout this section we assume that
(M, V) always denotes a simply connected and connected affine manifold
with complete parallel connection.
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We shall use the following notation: o is a fixed point of M; m is the
tangent vector space T,(M); K is the isotropy subgroup of the full affine
group A(M, V) at o; A(M, V)° and K° are the identity components;
a and f denote the Lie algebras of the groups A (M, V) and K, respectively;
1 is the subalgebra of the Lie algebra gl(m) given by

= {4 egl(m)A(R,) = A(T,) = 0}.

First we give a description of the algebra a. For this purpose let us

consider the Lie algebra a=i+tm (vector space direct sum) with the
bracket operation defined as follows:

[X’ Y] = (_Ro(X1 Y),—TO(X, Y))a

1)

[4,X] =A(X), [4,B]=AoB—BoA
for all A, B et and X, Y em. The assumptions VR = VT = 0 imply
that R, (X, Y)(R,) = R, (X, Y)(T,) =0 for every X,Y em. Conse-
quently, every curvature transformation R, (X, Y) X, Y e m,is an element

of {. This means that the bracket operation in a is well defmed Using the

basic properties of curvature and torsion we can easily see that ais actually
a Lie algebra.

As is well known, the assumptions on (M, V) imply that the group
A(M, V) is transitive on M and that K° is the isotropy subgroup of
A(M, V)°at o. By [2], Theorem X.2.8, the homogeneous space A (M, V)°/K°
is reductive in a natural way and, under the standard identification
M = A(M, V)°/K° V is the canonical connection on A(M, V)°/K°.
Therefore, we can write a = f+m (vector space direct sum). By Corollary
VI.7.9 of [2], the linear isotropy representation A of K in m maps K iso-
morphically onto the group K consisting of all automorphisms ¢ of the
vector space m such that ¢(R,) = R, and ¢(7,) = T,. Clearly, the Lie

algebra of the group K is the algebra f. Hence the induced representation

Ayt T FisaLie algebra isomorphism. As is well known, 4, is the restriction
of the adjoint representation of f in a to m. Using this fact and formulas
(1) and (2) of [2], Theorem X.2.6, we obtain the following

ProPoSITION 2.1. The map ¢ = A,+id,, is an isomorphism between
the Lie algebras a and a.

In the sequel, the algebras a and a will be identified by the isomor-
phism ¢.

Now, let f) be the vector subspace of the Lie algebra gl(m) generated
by the set of all curvature transformations R, (X, Y), X, Y € m. It follows
immediately from (1) that f)c f. By [5], Theorem 2, the vector space
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t = f)—l—m is a subalgebra of the Lie algebra a. With respect to the geo-
metrical interpretation of the algebra t given in the same theorem, t is
called the transvection algebra of (M, V).

Every admissible s-structure {s,} on (M, V) induces a linear trans-
formation ¢ of the transvection algebra t defined by ¢ = id + 8,, where

id is the identity transformation of f) and 8, = (8,).,,. The basic properties
of ¢ are the following:

PROPOSITION 2.2. (i) ¢ s an automorphism of the transvection algebra t.
(ii) ¢(m) = m.

(iii) Fix¢ =b.

For the proof of (i) we need the following

LeMMmA. (a) 8,(T,) =T,.

(b) 8,(R,) = R,.

(¢) R, (U, V)(8,) =0 for all U,V em.

(d) R,(U,V)=R,(8,U,8,V) for all U,V em.

() 8,[U,V]=1[U,8,V] for all Ueh, Vem.

‘Proof. (a) and (b) are clear. (c¢) follows from V'S8 = 0. (d) is a simple

consequence of (b) and (¢). It is sufficient to prove (e) for U = R, (X, Y),
X, Y em. In such a case, (e) is nothing but (d).

Proof of Proposition 2.2. (i) We see that ¢ is a vector space iso-
morphism. Now, it suffices to prove the equality ¢[U, V] = [¢U, ¢V]
in the following three special cases:

1. U,V eh. Thenalso [U, Vlehand ¢[U, V] = [U, V1= [$U, $V].
2. U,V em. Then

$LU, V] =¢(—R,(U, V), —T,(U, V) = (—R,(U, V), —8,(T,(T, V))).

By Lemma (d) and (a) we have

¢[U’ V] = (‘—Ro(so U’ SoV)7 _To(So U’ SoV))
=[8,U,8,V]=[¢U,¢V].

3. Ueh, Vem. In this case ¢[U, V] = 8,[U, V] and [¢U, ¢V]
= [U, 8,V]. By Lemma (e) we have ¢[U, V] = [¢U, ¢V].

Assertions (ii) and (iii) of Proposition 2.2 are obvious.

By Proposition 2.2, an admissible automorphism of the transvection
algebra t is an automorphism ¢ of t satisfying (ii) and (iii) of that prop-
osition.

THEOREM 2. There is an order-preserving one-to-one correspondence
between the set of all admissible s-structures on (M, V) and between the set
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of all admissible automorphisms of the transvection algebra t of (M, V).
The admissible automorphism ¢ = id+(s,),, corresponds to an admissible
8-structure {8,}.

Proof. By Proposition 1.1, the mapping {s,} >¢ = id4-(s,),, is
injective. Clearly, since the order of the map ¢ is equal to that of (s,),,,
‘the above-mentioned correspondence is order preserving. Thus, it remains
only to show how to construct an admissible s-structure {s,} from a pre-
scribed admissible automorphism ¢ of {.

Let G be the connected subgroup of A(M, V)° corresponding to the
algebra t and let H be the isotropy subgroup of G at o. The group G acts
transitively on M because m < t. The isomorphism ¢ from Proposition 2.1

maps the Lie algebra of H isomorphically onto f) The homogeneous space
G/H is reductive and, under the natural identification M = G/H, the
connection V coincides with the canonical connection on G/H corresponding
to the decomposition t = h+m. Every admissible automorphism ¢ of the
transvection algebra t induces an automorphism ¢ of the group G such

that ¢,, = ¢. A simple homotopy argument shows that the group H is
connected, so we have

(2) olH =idg.
Therefore, there is a well-defined diffeomorphism s of G/H given by
(3) 8(gH) = a(9)H for all ge@.

Since o, ,(m) = m and o(H) = H, Proposition 3.1 in [1] implies
that s is an affine transformation of (M, V). It is easy to see that s is a sym-
metry of (M, V) at o. By (2) and (3), s is ad(H)-invariant, so for every
x € M there is a well-defined symmetry s, at # given by 8, = gosog™,
where ¢ is an arbitrary element of @ such that g(o) = x. We claim that
this s-structure {s,} is admissible and that the corresponding admissible
automorphism of the transvection algebra is the given 4.

Using a local differentiable cross-section in the principal fibre bundle
G(M, H) we see that the map (x, y) — 8,(y) is differentiable. A simple
calculation shows that condition (ii) of the definition of an admissible
s-structure is also satisfied. Finally, the symmetry tensor field S of {s,}
is invariant by @, so S is parallel. This means that the constructed s-
structure {s,} is admissible. The equalities

¢ =id+(glm) =id+s,, = id+(8,),.0

complete the proof of Theorem 2.
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3. Proof of Theorem 1. In this section we construct a sequence
(M, V,), n >3, of g.a.s. spaces satisfying all requirements of Theorem 1.
For n = 3, the space (M;, V,) is known from the complete list of g.a.s.
spaces of dimension 4 (see [6]).

For every integer n > 3 let us consider the matrix group @, consisting
of the matrices

e 0 ... 0 T,

0 e ... 0 @,

0 0 en-1 x|
0 o0 0 1

where (%o, @1y ooy Bp_yy Ugy -y U,_,) € R*™ 1 is an arbitrary element and
Uy = —U;— ... —%,_,. The Lie group G, is diffeomorphic to the Cartesian
space R™ Y (zy, @y, ...,%,_yy Uy ...y %,_,) I a canonical way. Suppose
that the matrices of G, are identified with the corresponding (2n —1)-tuples.
Particularly, for the neutral element ¢ of G, we have ¢ = (0, ..., 0). Let
us consider a 1-parameter subgroup H, of G, given by the equalities
Bp =By = oo. =Bp_y = —B,_, =1, % =... =u,_; =0 and the homo-
geneous space M, = QG,/H,,.

PRrOPOSITION 3.1. The manifold M, is diffeomorphic to R**~% for all
n = 3.

Proof. The action of H, on G, is given by the formula

(Boy @1y ooy Tpyyy Uny evny Upy_y)°1

= (@t te"0, x, -+ te"1, ..., 2, _,+te"n—2, 2, | —te"n=1, Uy, ..., u,),

where 4y = —u,— ... —u,_,. Therefore, every orbit g-H,, g € @G, meets
the submanifold @, given by #, = 0 at exactly one point, namely for
t = —axy e . Thus we have a bijection y: M, — @,. Using a differentiable
local cross-section in the principal fibre bundle @, (M, , H,), we see easily
that the map y is differentiable. The inverse map ' is a composition
of the inclusion map @, — G, followed by the canonical projection @, — M,,
so it is also differentiable. The manifold G, is diffeomorphic to R*"~*
in a canonical way, which completes the proof of Proposition 3.1.

Note that in formulas of this section we use the following two index
sets:

i,j’ k’ eee E{O, 1, ---’n—l},
ay B,y %y pty...€{1,...,n—1}.
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A direct calculation shows that the Lie algebra g, of the Lie group

G, has a basis X,, X;,...,X,_;, Uyy..., U,_;, where
0 0
= % — = i

The bracket operation in g, is given by the formulas
[Xu Xj] = [Uu Uﬂ] = 01
[X05 Ua] = XO’ [Xa’ Uﬂ] = —daﬁxa'
In the sequel, we identify the algebra g, with the tangent vector
space T,(@,).
Let us consider vectors Y,, Y,,..., Y, _, defined by
Yo = X0+X1+ cee +Xn—2—Xn—l’
Ya = XO_XG fOl‘ a # n—l’ Yn—-l = X0+Xn_1-

(5)

(6)

The vectors Y,, Y,,..., ¥, ,, Uy, ..., U,_, form a new basis of the
algebra g, and the vector Y, generates the subalgebra |, corresponding
to the subgroup H, . Formulas (4) and (5) yield

(7) [Y{’ Yj] = [Ua’ Uﬂ] = 0’ [Y07 Ua] = Ya’

146,
¥, T = (522 %) -0, ..

1=0

For the subspace m, of g, spanned by Y,,..., Y, ,, Uy,..., U,_,
we have g, = b, +m, (vector space direct sum) and [H,,m,] = m,.
Since the group H, is connected, the homogeneous space M, = G,/H,
is reductive. Let V, be the corresponding canonical connection on M, .
By [2], Proposition X.2.6, formulas (7) yield the following expressions
for the torsion and curvature of V,. (The vector space m, is identified
with the tangent vector space T',(M,) in a standard way.)

T(Y., Y = To(U,, Up) = 0,
(8) ( 8) ( | 8)

1+8,
T,(Y,, Up) = —( - BZY,‘)+6G,,Y¢,

xm==]
'Ro(Ya’ Yﬁ) Yy = Ro(ch Yﬂ) Uy = Ro(Ya’ Uﬁ) Yy
= Ry(U,, Up) Y, = E,(U,, Up) U, = 0,

(9)

148,
'Ro(yai Uﬂ) Uy = —‘_n 8 U,,.
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Now, we calculate the algebra a, of the full affine group A ( M,V,).
According to Proposition 2.1 we have a, = &,, = m,,+fn, where:

%n = {4 egl(m,)|A(R,)) = A(T,) = 0}

and the multiplication in &,, is given by (1). By a long but routine calculation

it may be shown that the algebra fn has a basis consisting of two endo--
morphisms Y and U of the vector space m, given by

Y(U,) = U(Y,) =Y, ¥X(Y,)=TU(U,)=0.

Under the identification &n =a, we have Y = Y,. The vectors.
Y, Y,,...,. Y,,,Uy..., U,_,, U form a basis of the algebra a,. The
bracket operation in a, is given by (7) and by

(10) [U,Y]=1Y, [U, U.] =0.

Consequently, the algebra [a,, a,]i8 spanned by the vectors ¥Y,, ¥,, ...
vy Yoy, s0 [[a,,0,], [a,,a,]] = 0. Hence the algebra a, is solvable.
We have proved the following

PROPOSITION 3.2. The identity component of the group A(M,, V,)
18 solvable for all n > 3.

In Section 2 we have defined the transvection algebra t for every
connected and simply connected parallel affine manifold (M, V). For
(M, V) =(M,, V,) we have

PROPOSITION 3.3. The transvection algebra of (M,, V,) is the algebra
g, for all n> 3.

Proof. It is sufficient to prove that the algebra g, is generated by
the subspace m,, but this fact is a simple consequence of (7) and (10).

The set Aut,(g,) of all admissible automorphisms of the transvection
algebra g, of (M,, V,) can be characterized in the following manner.
Let C, be the set of all cyclic permutations of the set {0,1,...,n—1}.
For every r € R and o € C, consider a linear transformation F(o, r) of g,
defined by

F(o,7)(Y,) = X,,

Y, — Y. if o(a) %0
F(o,n)(¥) = l Y ’

- <+ 0(0) o(a) = 0’
(11)
T(Ya(a)_ Ya'(O))+ Uc(a)""' Ua(O) if G(a) #* O)

F(Uy 7)(Ua) = { _rya(o) _ Uq(o) if cr(a) =0.
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It is easy to check that F(o,r) is an admissible automorphism of g,
for every (o, r) € C, X R. Hence we have a well-defined injective mapping
F: C, X R - Aut,(g,).

PROPOSITION 3.4. The map F is bijective.

Proof. It is enough to prove that F is surjective. Let ¢ be an admis-.
sible automorphism of g,. By [1], Lemma 6.3, a 1-dimensional vector.
subspace i of g, is an ideal of the algebra g, if and only if { is spanned by-
a vector X, for some j €{0,1, ..., n—1}. Thus we have

(12) ¢(xj) = kj‘xa(j)’

where ¢ is a permutation of the set {0,1,...,n—1} and %; is a non-zero.
real number. Since Fix¢ =}, and the subspace b, is spanned by the
vector Y,, we have ¢(Y,) = Y,. This result together with (6) and (12),
yields

13 $(Y,) = ¥X,,
" (X, = Yoay— Yoo if o(a) #0,
B if o(a) = 0.

We prove now that o is a cycle. Let k be the least positive integer. for-
which ¢*(0) = 0 holds. For every 6 = 1,...,%k we put ¥, = Y,, where
a = ¢°(0). The elements of the set {¥,,..., ¥, ,}—{¥;,..., ¥;} are
denoted by Y;.,, ..., ¥,_,. By (13), the vector

(=% —1)(Ti+ .. +Tp) = (k+1)(Tpyy+ oo + Ty

is a fixed element of m,, by the transformation ¢. Since there is no non-zero.
fixed vector of ¢ in m,, we have k¥ = n —1; thus o is a cycle.

Tt remains only to show that there is a real number r such that ¢(U,).
= F(a,r)(U,) for all a. Since ¢(m,) = m,, there are real numbers A; and
B} (a,x =1,...,n—1) such that

(14) $(U,) = D ALY, + DBIU.,.

Applying the transformation ¢ to the identity 0 = [U,, U,] we,
obtain

0= 2<A:B;:—A;B::)[Y., U,]

“,p

= (> B - 5B+ 3 By - a3E)( D7) -

»u

- D MBi— 4B Y.
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Since the vectors Y,,..., ¥,_;,> ¥, are linearly independent,
we obtain 4

(15) AXB = A3B:  for all q, B, ,
(16) DAz DBy =D A5 'B:  for all q, f.
x o * “

Similarly, using the identity [Y,, U,] = Y,, we get

+1 if % = o(a),
17) B =1-1 if » = 0a(0),
0 otherwise.

From (15) and (17) we have

(18) Al =0 if B # o(a) or B # 0(0)
and
A" = 45®  for all a, B.

Thus, there is a real number » such that
(19) AX® — —r  for all a.

Put f = ¢7!(0) and a # B in (16). By (16)-(19) we obtain
(20) A2 =y for all a # o71(0).

Substituting (17)-(20) in (14) we see that ¢(U,) = F (o, r)(U,) for all
a, which completes the proof of Proposition 3.4.

Theorem 2 and Proposition 3.4 imply that (M,, V,) is a g.a.s. space
for all n > 3. It follows from (11) that there are admissible s-structures
of finite order on (M, , V,) corresponding to admissible automorphisms
F(o,0), '€ C,, and that all of them are of order n. Thus, we have proved
the following

PROPOSITION 3.5. For all n>3, the affine manifold (M,, V,) is
a g.a.8. space of order n.

By Propositions 3.5, 3.1, and 3.2, the g.a.s. space (M,, V,) satisfies
all requirements of Theorem 1.

I am grateful to Dr. O. Kowalski for his valuable remarks and com-
ments.
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