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THE UNIT BALL OF EVERY INFINITE-DIMENSIONAL
NORMED LINEAR SPACE CONTAINS
A (1+¢)-SEPARATED SEQUENCE

BY

J. ELTON axp E. ODELL (AUSTIN, TEXAS)

In this paper* we prove the following result:

THEOREM 1. If X s an infinite-dimensional normed linear space,
then there are an ¢ > 0 and a sequence (x,) < X with |z, = 1 and |z, —2,,]|
>14eif n £m.

This verifies a conjecture of Kottman [4] who proved Theorem 1
in the case ¢ = 0. For an infinite-dimensional space X, let

MX) =sup {1+¢: I(x,) < X, o]l =1 and |z, —2,] > 1+¢ if n # m}.

Kottman also proved that if X is isomorphic to I, (1 < ¢ < o), then
MX) > 2", while if X is isomorphic to ¢,, then A(X) = 2. Since Tsirelson [1]
has shown that there exist infinite-dimensional Banach spaces that
contain no isomorph of ¢, or I, (1 < g < o), one possible method for
proving Theorem 1 is eliminated. Our approach shall be to focus on
the question of whether or not X contains c,.

We shall always assume (as we clearly may) that X is an infinite-
-dimensional Banach space. .

We begin with the following lemma due to W. B. Johnson. We wish
to thank Professor Johnson for allowing us to reproduce here his result.

LeMMA 1. Let (®,) be a normalized basic sequence in X such that,
for all infintte M < N, there is a subsequence L = (1;) of M such that

(1) sup | :‘] (=1 || < co.
Lt |

Then X contains an isomorph of ¢,.

Proof. By a standard application of the combinatorial result that
Borel sets are Ramsey [3] we infer that there is a subsequence (m,) of N,
so that if (I;) is a subsequence of M, then (1) holds. Thusif y; = &, — @y, +1?

* Research of the second-named author was partially supported By NSF-MC8
74-24249.
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then for all subsequences (j;) of N we have

k
wup] Jyon < o

It is well known that this implies that (y;) is equivalent to the unit
“vector basis of ¢,. )

Proof of Theorem 1. Let (v,) be a normalized basic sequence
in X which is asymptotically monotone. By this we mean for all » and

.scalars ()7,
n (-2
| 2 ] < 4207 ]| 3 e
- =]

If X contains ¢,, we are done, so assume that X does not contain ¢,.
'Then by Lemma 1 we may assume (by passing to a subsequence if neces-
-sary) that

{2) sup “2,‘(—1)‘:0,,,‘” = oo for all (m;) = N.
iz

Notation. Let a be a limit point of the real sequence
(1/"3’» _wn+l + mﬂ+2"):=l .

Of course, 1/3<a<1.
For 6 > 0 we call an element b € X a §-block of (x,) if

. ]
b= (—1)s,, with b =1,

{=1

m<my<...<m, la/f—1|< é and 1> 3 is odd.
‘Also we shall write expressions like n < b, < by < ... < b, if

Pis1

b‘= 2 ;04 with ”<p1<pg<-.-<pk+lo
J=pi+1

Note that, by the definition of a, for all » and all 4 > 0 there is a
.0-block b with n < b. .

The method of proof will be to consider the technical condition (*)
below and show that if (x) holds, then (1) is contradicted, while if () is
_false, then the conclusion of the theorem is true.

() For all 6> 0 and all » € N, there exist é-blocks (b,)%., with
M < b, <by<...< by such that if b is a d-block with b, < b, then there
-exists an ¢, 1 <4 < &, such that ||b; —b|| <1+ 6.

The negation of (») is
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(nots) There exist 6 > 0 and »n € N such that for all é-blocks (b,)%_,
with n < b, < by < ...< b, there is a d-block b > b, such that, for all
1<i<k, ||b;—b]|>1434.

If (notx) holds, then an easy induction argument yields &-blocks
b, < by < ... such that ||b;—b;| =144 for ¢ #j.

Thus we agsume that (») holds. Let 8; = 20~/ and inductively choose
d;-blocks (b’),;_l such that b < b3 < ... < by, < b} <...and if b is a 8;-block
with b > b}, , then there exists an ¢, 1 <1 < ks such that 63 —b| < 1-|- 8.

Let

a
@ = -E;bi ,  where bJ = gi 2( —1)*+a,, .
13

CLAM. There i3 a sequence (d ’),.=l such that

@) sup | 2( —1yd], | < oo

The proof of Theorem 1 will be complete once we prove the Claim
gince this clearly contradicts (2).

Notation. For d espan(x,) and j € N let (d); be the element of
span(z,) obtained from d by deleting the last j non-zero terms of its ex-
pansion. Thus (v, + v, — @)+ 2,,)s = 2+ ;.

We now prove the Claim. Fix an even positive integer ! and let %,
1 < 4 < Ky, be arbitrary. Then there exists 4;_,, 1 < ¢;_; < ¥;_,, such that

Ilb‘l 1 bs," < 1 + 61—1 .
Now,

a5, —d8) — (05, — byl < —1|+

a .
- — 1< 8, +6,<24_,.
‘32 l_ ﬂ:l ‘ =1 ] -1
Thus |id; d',||< 1+434,_,, and so

I =il < (1+88_,)(1+20"¢-Y) < 14 8,_,.
Also
Lol

W > 1+ 6;_,.

(@52, —disll >

We proceed by induction. Assume that 1 <j'<1—2 and that we
have found 1<% <k for j = l—j’, l—j’'+1,...,1 such that if

2 _( 2 ( 1)l-j'+1df)

Fm=l—j’

then 1 — 6'_“1_'_1) < "zjo" <1 -+ 6,_(1,“) . This implies that z-fo/"zy" is a
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6,_(,.+,)-block (note that 2;. has odd support size). Thus there exists an
G—r+1)r 1< 4o gpgy < Ki— (541, Such that

Ib'—g - S 1404y
Also,
! 2
Y-+ i I-(3'+1) __ 4"
( 1) dzj) (b'l (j+l) "z '" l
1=1=G+1) i
G'+1) _pl—'+1)y _ -$+iqd I
“ (@ Gy — Vi) (( 2 (=1) ) |]z ||
i=1-y
a
ﬁz TG —1"" zf"'_” S ey
H—(4"+1)
So

I
N3 e
< (1438 4 A +207C-6FM) <14 60y,

It follows that if

1
2y = ( 2 ( _1)1—(]'+1)+fdf a1
i=1-('+1)
then

1 =01 (y1) < IRgoall < 1+ G549
If we set j'+1 =1—-1, we get

(3 -2y <,

and smce each df has support size at least 3 and we are deleting only
!l —1 terms, we get

(4) I f,‘ (-1 || < 2(1+207) < 3.

Now the d’ 's in (4) depend upon the fixed even ! with which we began
the argument above We will now write ¢;; instead of ¢; to note this de-
pendence. The set {i;,:1e N, even} has ca.rdma.hty less than or equal
to %,, and so there is an infinite set L, of positive even integers and 1 < ¢,
< k, such that 4;, =4, for all I € L,. Continuing in this way, we get a
sequence of infinite sets L, > Ly > ... and 1< 4; < k; such that if ke N
and j' <k, then 4 ;. = ¢, for all leL,,
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Let I, be the k-th element of L;. Then k < 1,/2 and, for all k e N,
k . bj2
| 5o <] 3o, avaomy <saeam

This proves the Claim, and hence Theorem 1.

Remarks. (1) The proof of Theorem 1 shows that if (#,) is any
weakly null normalized sequence in a space X that does not contain o,,
then there are an s>0 and a normalized block (b,) of (v,) with ||b, —b,}l
>1+e¢ for n # m.

(2) The non-separable analogue of Theorem 1 is false. For example,
if X = ¢,(I"), where I'is uncountable and (z,),., is a set of norm 1 elements
in X with |, —2ll > 1+¢ for a % #, then A must be countable. For
suppose A is uncountable. If x € ¢,(I") and é > 0, then let

‘8y(@) ={y el |z(y) > 8}.

For ae A let y.(y) =z, (y) if ye8,(2,) and y,(y) = 0 otherwise.
Then (¥,)eeq is @ set of norm 1 elements in X with |ly, —y,ll > 1+e for
a # p and 8,(y,) is finite for each a. Thus there are an uncountable subset
A, « Aandafinite ¥ = I'such thatif « # 8 € A,, then 8,(y,)N 8o(ys) = F
(see [2]). Since A, is infinite, there exists a # 8 € A, so that |ly, —=y,ll <1
which is a contradiction.
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