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If a compact space carries a uniform S,-convexity with connected
convex sets then the dimension functions dim, ind and Ind are all equal to
the “convex” dimension of the convex structure. The use of the latter
dimension function is essential in the proof that the other ones are equal.

Introduction, It is well-known that for separable metric spaces the
dimension functions ind, Ind and dim coincide. Outside of this class these
functions diverge. It is the purpose of the present paper to introduce a new
class of compact spaces on which the above dimension functions coincide.
These spaces have the property of carrying a “uniform” convex structure with
connected convex sets and with a natural separation property.

These convex structures should not be regarded as merely an axiomatic
remodelling of linear spaces. For instance, superextensions (see [7]) carry a
completely different kind of convex structure which proved useful in
obtaining purely topological results (e.g. [8], 6.6 and [13], 3.4). Also, certain
constructions like the formation of convex hyperspaces lead to convexities
with distinguished properties (see [17] and [18]). Another apparently
powerful construction is dealt with in the present paper.

In proving the above quoted result we have heavily borrowed from
results concerning “convex dimension theory” as deviced in [15]. This is a
dimension theory with a particularly strong geometric flavour, and which
seems to be even better behaved than topological dimension theory for
separable metric spaces. For instance, convex dimension behaves additively
under the formation of products ([15], 3.3), it is characterized by the
existence of “convexity preserving” maps onto cubes with “subcube”
convexity ([15], 4.4), it is not affected by passing to the closure of a convex
set ([15], 3.6), and it satisfies an adapted version of the Sum Theorem ([15],
4.7). Roughly speaking, this dimension function is obtained by a consistent
replacement of the word “set” by “convex set” in the definition of “ind”. One
could of course try to take other (inductive) dimension functions as a model,
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but within reasonable margins, all these efforts lead to the same “convex
dimension” ([15], 2.4). None of the above results requires metrizability;
instead connectedness of convex sets is required.

For a compact space X the series of inequalities

dimX <ind X <Ind X

is easily obtained. Our proof of the main theorem consists in showing that
the above sequence is bounded above and below by the convex dimension of
X (relative to a suitable convexity). The fact that convex dimension does not
exceed dim is derived from the corresponding result for separable metric
spaces (see [16], 5.2), and involves the formation of metric quotients of X in
the sense of convex structures. The inequality with Ind comes from a
technical induction procedure.

Formation of quotients of convex structures is studied with some
generality in Section 2 below. Section 1 contains the necessary preliminary
materials, and the main theorem is derived in Section 3. Some results
concerning non-compact spaces are derived as well.

1. Preliminaries.

1.1. Set-theoretic convexity. Let X be a set. A convexity on X is a
collection 7 of subsets of X which is closed under intersection and upward
filtered union (in particular, @, X e %). The members of % are called convex
sets, and the pair (X, %) is called a convex structure. The (convex) hull of a
set A X is defined in the obvious way:

h(A)=N{C: Ac=Ce%).

The hull of a finite set is called a polytope, and a set, H — X is called a half-
space if both H and X\ H are convex.

The following separation property will be of use below. A convex
structure (X, ¢) is S, if for each pair C, C’ of disjoint convex sets there exists
a half-space H of X with

CcH and C cX\H.

It will be assumed throughout that all singletons are convex.

1.2. Uniform convexity. Let (X, 4) be a uniform structure, where u is
defined in terms of diagonal neighborhoods. Let % be a convexity on X. If
U, Ve, then -Vis said to be associated to U (relative to 4) provided that for
each Ce 7,

h(V[C) = U[C].
We say that u is compatible with % if
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(1) all polytopes are closed in X (i.e. (X, %) is a topological convex
structure, cf. [14], 1.2), and

(2) for each Uepu there exists an associated Ve u.

One can easily adapt these definitions to the case where u is defined in
terms of coverings of X (see [16], 2.1). Both approaches are used
interchangeably, according to which one is most favourable in given
circumstances. Uniformities are assumed to be separating.

A convex structure (X, 7) is called uniformizable (metrizable) if there
exists a (metric) uniformity on X compatible with 7. It was shown in [16],
2.2, that a uniformizable convex structure is closure-stable, that is: the closure
of each convex set is again convex.

If X is compact Hausdorfl, and if u is the unique uniformity of X, then
a topological convexity % on X is compatible with u iff the following
conditions are satisfied:

(1) the collection 7%* of all nonempty convex closed subsets of X is
closed in the hyperspace of X;

(2) for each Ce7* and for each open set O > C there exists a De %*
with CcintDc D c O
(see [16], 2.5). The properties (1) and (2) are also equivalent to the continuity
of the convex closure operator of (X, 7) (see [4], 1II.1).

1.3. Convex dimension. If (X, %) is a set-theoretic convex structure and if
Y < X, then the family

“1Y={CnY: Ce%)

is again a convexity which is called the trace of % on Y. This construction is
usually applied in case Y is a convex subset. Then, if u is a uniformity on X
compatible with 7, u[Y is a uniformity on Y compatible with 7 | Y.

Let % now be a topological convexity on X. The (convex) small inductive
dimension of (X, %) is the number cind(X, #)e{—1,0, 1, ..., oo} determined
by the following axioms:

(1) cind(X, 4) = —1 iff X =Q,

(2) cind(X, %) < n+1 (where n < o) iff for each convex closed C = X
and for each xe X'\ C there exist two convex closed sets C,, C, < X with
Cc(C)\C,, xeCy\Cy, C;uC, =X, and cind(C, nC,, “[C;nCy)< n.

In [15], 2.3, various other types of convex inductive dimensions have
been described. It was shown in [15], 2.4, that all these dimension functions
coincide for uniformizable S,-convexities with connected convex sets. In this
way there is no need to consider other inductive dimension functions for
(suitable) convexities.

For the reader’s convenience, we reformulate some results of [15] in
terms of uniformizable convexities. Recall that a hyperplane of a topological
convexity is the boundary of an open half-space. Note that a hyperplane in a
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closure-stable convexity is always a convex (closed) subset. If (X, 4) and
(X', 6') are (set-theoretic) convex structures, then f: X — X’ is convexity
preserving (CP) relative to % and ¢’ provided f ~!(C’)e% for each C'e%’. In
this case we write

1 (X, €)= (X', ©).

1.4. THEOREM. Let % be a uniformizable S,-convexity on X with connected
convex sets. Then cind(X, ¥) <n+1 iff for each hyperplane H of X,
cind(H, ¥ |Hy<n.

1.5. THEOREM. Let ¢ be a uniformizable S -convexity on X with connected
convex sets and with compact polytopes. If n < co, then the following assertions
are equivalent:

(1) cind(X, 6) > n,

(2) there is a CP map f: (X, ¥)— [0, 1]" which is onto (the n-cube is
equipped with the “subcube” convexity, 1.e. the subcubes are the convex sets).

By a map we mean a continuous function. We finally quote a basic
result from [16]:

1.6. THEOREM. Let X be a separable metric space, and let ¢ be a
metrizable S,-convexity on X with connected convex sets and with compact
polytopes. Then

cind(X, ¥) =dim X.

For details concerning the Lebesgue covering dimension dim, or
concerning other topological dimension functions, see [3], Chapter VII.

2. Uniform quotients of convexities. We now describe a simple though
very effective procedure to obtain quotients of convex structures the basic
properties of which can easily be controlled from the original convex
structure.

2.1. Compatible subuniformity. Let (X, u, ¥) be a uniform convex
structure, where u is defined in terms of diagonal neighborhoods. By a
compatible subuniformity of u we mean a subuniformity yx' of u (which need
not generate the u-topology, and which need not even be separating) such
that for each U ey’ there is an associated Ve u which is in y’ (terminology of
1.2).

For any subuniformity u' of p there is a corresponding equivalence
relation ~,. on X the graph of which is simply the set () u'. Put X=X [~
and let q: X — X denote the resulting quotient function. We also put

E={U: (gxq *(U)ew] and € ={D: q '(D)e%).
Note that g is CP relative to 4 and €.



COMPACT SPACES WITH A UNIFORM CONVEXITY 191

2.2. THEOREM. Let (X, pu, %) be a uniform convex structure and let y' < p
be a compatible subuniformity. Then (with the above notation) the following is
true:

(1) (X, fi, %) is a uniform convex structure,

(2) for each Ce%, q(C)e ¥,

(3) (X, é) has compact polytopes if (X, %) has,

(4) if (X, %) is S4, then so is (X, %).

Proof. For Veyu we put

V=(axq)¥).
Note that Pefi. Let Ue i, and choose Ve’ such that
VoVoV < (g xq) ! (U).
Let (v,, v;)e Vo V. Fix ve X with (v, v)e Vand (v, v;)e V. Then there exist x,,
Y, ¥, X5 iIn X with
q(x)) =v;, g =v=40), 4q(x)=0,,

and such that (x,, y)eV and (y', x;)e V. Then also (y, y)e V since y ~, ¥,
and it follows that
(x4, Xx3)e VoVoVcc U.

This shows that VoV c U, and it easily follows that j is a uniformity on X.

It is clear that 4 is a convexity on X. Singletons in X are convex by a
more general argument below. Let C — X be convex. Its saturation relative
to ~, is denoted by sat(C). One easily sees that

g~ '(q(0) =sat(C) = N{U[C]: Uepy}.
By the compatibility requirement on x' we can fix an associated U’'e y’ for
each Uey'. Then sat(C) =\ {h(U'[C)): Uey'}, which is a convex set.
Therefore, by construction, q(C) is convex in X. This establishes (2).
Note that for each subset 4 c X,

(*) q(h(4) = h(q(4) (h is the hull operator of (X, %))

since g is CP. By the above argument, gq(h(4)) is a convex set including g (A),
whence the inclusion () becomes equality. Then (3) is obtained by taking A4
to be any finite set.

We now show that /i is compatible with €. To this end, let Ue i and let
Ve )’ be associated to (g x q)~!(U). Then choose We y' such that

WoWoWc V.
We first show that for each De €

(%) g~ (W[D) = Vg~ ' (D)].
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Indeed, if q(x)e W[D], then there is a point yeq™!(D) with (q(x), g(y))e W.
Hence there exist x’, y’e X with

X'~px, yY~py, (X,y)eW.
Then (x. vie WoWoWc V, whence xeV[q~'(D)]. It follows from (%)
that hig~ " (W[D]) < h(VIg~' (D))= (gxg ' (V[g~"(D)] =q " (U[D)),
and hence that
q(h(q~* (W[D]))) = U [D].
By (2) we find that

q(h(q~*(WLDD)) = k(g (g™ ' (WD) = R(W[D]),

showing that W is an associated refinement of U.

We finally derive statement (4). Let D,, D, 7 be disjoint convex sets.
As (X,7) is S,, we find a half-space H with

g '(Dy)cH and g¢q !'(D,) < X\H.
Then
D, cq(H)\q(X\H), D,cq(X\H)\q(H) and gqH)Uq(X\H)=2X

(i.e. the pair q(H). ¢(X\ H) screens D, from D, in X), and q(H) and ¢ (X \ H)
are convex by (2). It then follows from [14], 2.2, that (X, 7) is S,. 8

The resulting map
q: (X, u, %)~ (X, i, 7)
will henceforth be called the uniform quotient map (obtained from u).

3. Main theorem. We begin with a modification of a factorization
theorem of Mardesi¢ [6]. Our proof is largely based on an argument of
Arhangel'skii in [1].

3.1. THEOREM. Let X be compact, and let % be a uniformizable convexity
on X. If g: X— Y is a mapping, then there exist a uniform quotient map

q: (X,7)— (X, 7)

and a map §: X - Y such that

(1) goq =g,

(2) dim X < dim X,

(3) weight of X < weight of Y.

Proof. Let w denote the weight of Y. Then there is a base v for the
canonical covering uniformity of Y such that v has cardinality w. Put

to =19~ 1(¥): ¥ev}.
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We construct u,,, from yu, as follows. Let ¥";, ¥, epu,. We first fix a finite
open covering ¥~ of X with the following properties:

(4) ¥ is a common star refinement of ¥°, and ¥',;

(5) ¥ is a common associated refinement of ¥"; and v";;

(6) 7" has degree < n+1, where n < oo equals dim X.
Let v ={V,,..., Vi}. By [3], Theorem 7.1.7, there exists an open cover
W ={W, ..., W} of X such that

(7) W.cW,cV foreachi=1,...,k
Note that #” also has degree <n+1. Then put

W'(x) =NV xe VI\U{W;: x¢ W},

for each xe X. We find that
W = {W'(x): xe X}

is a (finite) open cover of X. If W’(x) meets W,, then xe W, c ¥, whence
W'(x) = V. and

(8) st(W,, ") V,.
Having fixed two covers #" and #” as in (7) and (8), we let u,,, consist of
all covering %', #” obtained from the various pairs ¥",, ¥", in pu,.

- o]
By (5), the collection ) p, is a base for a uniformity u' < u, which by
p=0

(6) is compatible with €. In each step of the above inductive construction, we
can take care that the cardinality of u, remains equal to w, whence y' has a
base of cardinality w. Let g: (X, ¥)— (X, é) be the uniform quotient map
obtained from . Then the weight of X is at most w (establishing (3)), and as
o < p' we find that g factors through g as was required in (1).

We now take a look at the dimension of X. Let % be a finite open cover
of X. By compactness of X there is a finite open cover ¥ ey’ with q(¥')

refining %. By construction of the collections y,, there exist ¥ , ¥, ¥ in y'
with ¥ < ¥” and

v ={V,... W}, ¥ ={W,..., W]} (injective indexation),
W,cWcV, (i=1,...,k),
st(W,, ')V, (i=1,...k),

and such that the degree of ¥" is at most n+1.

Then q(#) is a refinement of %, and we show that the degree of g(#)
is at most n+ 1. Indeed, suppose that #°, = #  is a subcollection with more
that n+1 members such that (\q(#) # @. Then there exists a point
x(W)e W for each We %, such that x(W,,) and x(W;,) are equivalent (under
~y) for each W, , W,,e #,. For any W€ #o we then find that (since
We )

{x(W): We #,} cst(W,, #") c ¥,

4 — Colloquium Mathematicum L.2
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by (8). Hence the collection
Vo = {V;: Wie ¥}
has more than n+1 members (injective indexation), and
{x(W): We#"o} < N7,
a contradiction. This establishes (2). W

3.2. MAIN THEOREM. Let X be compact and let € be a uniformizable S,-
convexity on X with connected convex sets. Then

dimX =ind X = Ind X =cind(X, %).

Proof. We will derive the following sequence of inequalities:
cind(X, ) L dim X Lind X € Ind X € cind (X, ¥).

Note that (3) is a triviality, and that (2) follows from the fact that X is
Lindeldf, [3], 7.2.7.
Proof of (1). We will show that for each n with 0 < n < oo,

n<cind(X, ¥) = n<dimX.
Assume that cind(X, %) > n. Then by 1.5 there exists an onto CP map
g: X-[0,1]".
By Theorem 3.1 we obtain a uniform quotient map
g: (X, 6~ (X, %)
together with a factorization
g: X-[0,17

of g, such that X is metrizable (countable weight), apg dim X < dim X. For
each convex set C [0, 1]* we find that §~!(C) = X is convex since

g g~ ' (C)=9g"1(O)
is convex in X. Hence g is a CP map, which is obviously onto. By 1.5 again,
cind(X, ) > n,
whereas by 1.6,
cind(X, ) =dim X < dim X.

It follows that n < dim X, establishing the above implication.
Proof of (4). The following statements P(n), Q(n) will be obtained
simultaneously by induction on n=0, 1, 2, ...:
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P(n): if € is a uniformizable S,-convexity with connected convex sets on
the compact space X, then cind(X, ¥)<n = IndX <n.

Q(n): if ¥ is a uniformizable S -convexity with connected convex sets on
the compact space X, and if C,, ..., C, are convex closed sets of X

p
with IndC, <n for k=1,...,p, then Ind ) C, <n.
k=1

In the sequel the boundary A\intA4 of a set A in a space X will be
denoted by 0x(A) or J(A4). Reference to the convexity ¢ will often be
supressed from our notation.

We first note that a connected (convex) set A with Ind A < 0 (resp.
cind A < 0) can have at most one point. Hence P(0) and Q(0) are trivialities.
We proceed by induction, assuming the above statements to hold for all
m < n. Suppose that cind(X) < n+1, let A = X be closed, and let P o 4 be
an open set. It follows from the compactness of X and from the “Hahn-
Banach Theorem” ([16], 2.6) that the open half-spaces of X form a subbase
for the topology of X. Hence we can find a number of open half-spaces O,
i=1,...,q,j=1,...,r such that

AcOcOcP,
where
q r
0=0U N 0y
i=1 j=1
Then
q r q r
1= 1= i=1 j=
By Theorem 1.4, cind(00;;) < n, and hence by P(n),

Ind (60;;) < n.
Using Q(n), we find that
q r
i=1 j=1
showing that Ind X < n+1.

This establishes P(n+1). Suppose next that C,,..., C, are convex
closed sets in X with IndC, <n+1 for k=1, ..., p. Let

p
be a closed set, and let P o A be a relatively open subset of C = .{) C,. As
k=1
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above we obtain open halfspaces O;;, i=1,...,¢9, j=1,...,r, of X such
that

AcO0cOcP,

where

q r

0 = U m Oijﬁc.

i=1 j=1
Then

q r

c0)=U U 6C(0ijnc)a

i=1 j=1

where

4
aC(OU- N C) c kt__)l 5(_-,‘ (Olj N Ck)'

As IndC, < n+1, we obtain from the inequalities (1), (2), and (3) that
cind Cy < n+1. Also, 0, (0;; " C,) is a (probably empty) relative hyperplane
of C,, whence by Theorem 1.4

cind &, (0; N Cy) < n.
Hence by P(n),

Ind ¢, (0;; N Cy) < n,
and by Q(n),

q r 14
Indoc(0O)<Ind U U U 0¢(0;nC)<n.
1

i=1 j=1 k=
This shows that

p
Ind J Cy<n+1,
k=1

completing the inductive proof.
The inequality (4) now follows from the statements P(n), n=0,1,... B
The compactness condition on the space X is rather essential both in
the proof of Theorem 3.1 as in the proof of the inequalities (1) and (4).
Nevertheless, it is possible to derive some results concerning arbitrary convex
subsets of a compact space:

33. CoroLLARY. Let X be a compact space equipped with a uniformizable
S4-convexity with connected convex sets. If C = X is convex, then ind C
=cind C. If C is Lindelsf moreover, then also dimC = cind C.

Proof. If A is a subspace of the regular space B, then ind A <ind B
([3], 7.1.1) and if A is a closed subspace of the normal space B, then
dimA <dimB ([3], 7.18). Let C< X be convex, and let P< C be a
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polytope. Then
1) indP<indC <indC.

If C is Lindelsf then C is also normal ([3], 3.8.2), whence by the above
quoted result and by [3], 7.2.7,

) dim P < dimC < ind C.

We distinguish between the following cases:

Case I: cindC =n < oo. Then by [15], 4.5, there is a polytope P = C
with cind P = cind C, whereas by [15], 3.6, cind C = cindC. As P and C are
compact, we can apply Theorem 3.2 to obtain

(3) indP=cind P=cindC =indC,
and hence ind C = ind C by (1). If C is Lindelsf we then find from 3.2 that

dimP=cind P=cindC = indC,
whence dimC =ind C by (2).

Case II: cindC = 0. By [15], 4.5, again, there is a sequence of
polytopes R, = C with cind P, > n. Then for each ne N, 3.2 implies that

n<cindP,=ind P, <indC,
n < cind P, = dim P, < dimC (C normal, e.g. Lindeldf),
whence indC = 0o =dimC. B

3.4. ProBLEM. In order to obtain better results for “nice” convexities on
noncompact spaces, one is naturally lead to consider the following problem.
Let (X, #?) be an S, uniform convex structure. Do there exist a compact
space X and a uniform S,-convexity % on X such that (X, %) embeds as a
convex set (with trace convexity) of (X, %)? (P 1287)

Note that %.is closure stable, and hence that cly(X) is convex in X.
Hence it may be assumed that X is dense in X. It then follows from the
continuity of the convex closure operator of % that all convex sets in X are
connected if the same is true for X. Also note that convexity of X in X
implies that é-polytopes should be compact, and density of X in X implies
that cind X = cind X. Finally, it follows from the continuity of the convex
closure operator on X that the convex closed sets of X form a closed
subbase for the topology. In the terminology of [14], 1.5, X has the weak
topology relative to %. This property is inherited by subspaces, and it
follows that X must have the weak topology relative to %. Even in case
(X, ¥) is R" with linear convexity (n > 1), no solution is known (and, as a
matter of fact, we have some doubts on an affirmative solution)(}).

(') For updated information, see [19].
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A different notion of “compactification” has already been considered in
[9], 2.6. It appears that the “compact” objects in the category of topological
convexities are the binary ones (binary means that every finite collection of
pairwise intersecting convex sets has a common point). The following results
may motivate this point of view.

(1) If (X, ¥) is a binary topological convexity with compact polytopes such
that every pair of points in X can be “screened” with convex closed sets,
then the same is true for every pair of disjoint convex closed sets ([14], 2.9;
compare with the implication “T, = T,” for compact spaces);

(2) A CP image of a binary convexity is ag}zin binary (this can be seen with
the notion of “triple<convexity”, see [10], p. 992);

(3) Binary convexities with enough separation properties are “maximal” binary
([9], 1.6; compare with the fact that compact T,-spaces are maximal
compact);

(4) Every “sufficiently separated’ (X, €) extends to a compact binary and S,-
convexity space A(X, %) (its “superextension”) which is a compactification
of (X, ) in the following (categorical) sense: every CP map

(X, ) (X', ¥)

extends uniquely to a CP map
AMX,¥)- (X, €)

([9], 2.6). We note that X need not be dense in A(X, ¥) (X may be
compact for instance), nor need it be convex in A(X, %). Also, (X, ¥) is
isomorphic to (X, €) if X is compact and € is binary.

If (X, %) is a binary convexity with X not necessarily compact, then X is
a dense convex subset of A(X, %) if its polytopes are compact: this follows
from the fact that A(X, %) is a Wallman-type extension of X (ultrafilters are
replaced by maximal pairwise intersecting families of convex closed sets): no
new points will be added to compact polytopes. Then X is convex in A(X, %)
as an upward filtered union of 1(X, %)-polytopes. Density of X follows from
the fact that a maximal pairwise intersecting family of convex sets is also
finitely intersecting by binarity.

In this case the above suggested compactification problem theorefore
has an affirmative solution, and thus we have the following consequence
of 3.3:

35. CoroLLARY. Let X be a connected space with the weak topology
relative to a uniform binary S,-convexity with compact polytopes. Then ind X
=cind X. If X is Lindelof moreover, then also dim X = cind X.

Proof. All convex sets in X are connected by [14], 29. B
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By way of example, let us mention the following result. If X is a locally
connected tree-like space, then the collection of all connected subsets of X
yields a binary S,-convexity with compact polytopes, [14], 2.10, which is
uniformizable if X is, [14], 2.2. Relative to the weak topology, X is still a
tree-like space, which is completely regular and hence uniformizable by [14],
1.6.

Each of the above quoted propertics can be passed on to convex
products with finitely many factors (a product of convex structures is the
“coarsest” convexity on the product set making all projections CP). Hence if
X is a product of n locally connected, nontrivial tree-like spaces with the
weak topology, then

indX =cindX =n

(convex dimension is additive under formation of products, [15], 3.3), and if
X is Lindeldf moreover, then also dim X = n.

For the case where X is a product of totally ordered connected spaces
(which have the weak topology by definition), this result was obtained in [2],
12.1. See also [5], Theorem 1, for a comparable result concerning products of
one-dimensional compacta.

One other area to apply our results is the theory of linear spaces. If X is
a locally convex linear space then the natural (translation invariant)
uniformity on X is compatible with the linear convexity, [16], 2.2. Also, this
linear convexity is S, see [11], 2.3. These properties are inherited by convex
subsets. Hence if C is a compact linearly convex subset of X, then by 3.2

indC =IndC =dimC.

However, this result is not very deep: it is fairly easy to see that a finite-
dimensional (in any sense) linearly convex set is separable and metrizable.
As is well known, there exist compact metric spaces X and Y with

(*) dim(X xY) <dim X +dim Y.

The first example of this kind was discovered by Pontrjagin, [11]. Since then.
there has been a strong interest in obtaining conditions on X and Y in order
that (=) does not occur. One procedure is to try to obtain equality of dim
with an additively behaved dimension function like, for instance,
cohomological dimension over the integers modulo a prime. We are now
able to present a quite different candidate: convex dimension. It is true, of
course, that convex dimension theory attains its full strength for sufficiently
nice convexities only, and consequently that the class of involved spaces is
relatively small. However, these spaces are behaving in much the same way
as absolute retracts (a metric space as in theorem 3.2 is actually an AR by
[16], 5.1), and even for such spaces the question whether or not (*) can
occur, seems to be relevant.
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