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PRINCIPAL PROJECTION BANDS OF A RIESZ SPACE
' BY

J. JAKUBIK (KOSICE)

In this note we give a solution to a problem on bands of a Riesz
space proposed by Luxemburg and Zaanen [5], and we investigate some
analogous problems for lattice ordered groups.

For the fundamental concepts of vector lattices and lattice ordered
groups see Birkhoff [1], Conrad [2], and Fuchs [3]. Note that in [5] the
Bourbaki terminology is used, and a vector lattice is called a Riesz space
(in [4] and [7] a vector lattice is called a K-lineal).

1. Riesz spaces. Let us recall the following notions. Let L be a Riesz
space and A a linear subspace of L such that

(@) if X = A4 and X has a supremum in L, then this supremum
belongs to 4;

(b) if aed, be L, |b| < |a], then beA.
. Under these assumptions A4 is said to be a band of L. From (a) and
from the fact that A is a linear subspace of L it follows that if Y < A
and inf Y exists in L, then inf YeA. Let ce L. The smallest band of L
containing the element c is called a principal band generated by the element c.
Let X <« L. Write

X% = {ye L: |z|Aly] = 0 for each zeX}.

Then X’ is a band of L ([5], Theorem 19.2).
Let A and B be bands of L such that the Riesz space L is an order
direct sum of A and B (cf. [5], § 24); we write

(1) L = A@®B.

Then A and B are called projection bands in L. A band A4 in L is
a projection band in L if and only if for each u, 0 < ue L, the element

(2) Uy =si1p{'veA: 0<v< u}
exists in L (cf. [5], Theorem 24.5). If (1) holds and f is an element of L,
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‘then the components of f in A (respectively, in B) will be denoted by
f(A) (respectively, by f(B)). It is easy to verify that by (1) we have B = A°
(cf. [6], Theorem 24.1).

A projection band of L that is at the same time a principal band
will be called a principal projection band. A constructive characterization
of principal projection bands is given in [5], Theorem 24.7.

The followmg two notions were introduced and studied in [5].

Definition 1. A Riesz space L is said to have sufficiently many
projections if every non-zero band of L contains a non-zero projection
band of L.

Definition 2. A Riesz space L is said to have property (o.d.) if
every non-zero projection band of L contains a non-zero principal pro-
jection band of L.

In other words, property (o.d.) means that the set of all principal
projection bands is order dense in the set of all projection bands (partially
ordered by the set-theoretical inclusion).

In [5], p. 183, the question has been proposed whether the property
to have sufficiently many projections implies property (o.d.). We shall
show that the answer to this question is positive. ‘

Remark. It follows from Theorems 22.3 and 30.4 of [5] that if
a Riesz space L has sufficiently many projections, then for each band A
of L there exists X c L with (X%% = A. (This result will not be used
in what follows.)

LEMMA 1. Let C be a band in L and let formula (1) be valid. Then
C =(4AnC)®(BnNO).

Proof. It suffices to verify that for each ce C we have c(4)eANC
and ¢(B)e BNC. Put ¢v0 = u, and —(¢A0) = 2. Then ¢ = u —2. Let u,
be as in (2). Clearly, ue C and 0 < %, < %. Thus by (b) we obtain u,eC.
According to Theorem 24.5 of [5], u, = u(A). Hence u(4)eANC. Analo-
gously, we get 2(A4)e ANC, and hence ¢(4) = u(4) —z(A)eANC. Similarly,
¢(B)e BNC. ’

LEMMA 2. Let (1) be valid. Let A, and B, be bands in A and B, respec-
tively. Then L, = A,®B, is a band in L.

Proof. L, is a linear subspace of the space L. Let X < L,, and
supX = xye L. Write

= {#(A): veX} and X, = {x(B): zveX}.

Then by (1) we obtain z,(A4) = supX,, and x(B) =supX,. It
follows from (1) that A is a band in L, and hence 4, is a band in L. Clearly,
X, c A,, thus supX,cA,. Hence x,(A)eA, and, analogously, x,(B)e B,.
Therefore,

supX =z, = xo(A)+2(B)e L,.
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Hence (a) is valid for the set L,. Let ce L,, de L, |d| < |c|. Clearly,
lz|(A) = |x(A)| for each z¢ L. Thus by |d]| < [¢c| we obtain |d(4)]| < |e(4)].
Since ce L,, we have |c(4)|ed,, and since A, is a band in A, we infer
that d(A)eA,. Analogously, we verify that d(B)e B,. Thus d = d(4)+
4+ d(B)e L,. Therefore, L, is a band in L.

LeEMMA 3. Let C be a principal band in L generated by an element c,
and let A be a projection band in L such that A = C. Then A is a principal
band in L.

Proof. Since A is a projection band, there is a band B in L such
that (1) is valid. Hence, according to Lemma 1,

(3) C = A®(BNO).

We intend to show that A is a principal band in L generated by the
element c(4).

If A is not a principal band in L generated by c¢(4), then, because
of ¢(A)eA, there exists a band A4, in L such that A, is a proper subset
of A and ¢(A)ed,. Put C, = A,H(BNC). By Lemma 2, C, is a band
in L. We have already shown (cf. the proof of Lemma 1) that ¢(B)e BNC.
Hence

¢c =c(A)+c¢(B)ed,®(BNCO).

Since A, is a proper subset of A4, it follows from (3) that C, is a proper
subset of C. Thus C is not the least band containing the element ¢, which
is a contradiction.

THEOREM 1. If L is a Riesz space having sufficienily many projections,
then it has property (o.d.).

Proof. Let P be a non-zero projection band in L. Then there is
an element p, 0 < pe P. Let @ be the principal band in L generated by p.
We have {0} # @ < P. Since L has sufficiently many projections, there is
a projection band A in L such that {0} #* A < @. According to Lemma 3,
A is a principal band. Hence A < P and A is a non-zero principal pro-
jection band. This shows that L has property (o.d.).

2. Lattice ordered groups. Let G be a lattice ordered group. The
group operation will be denoted by 4, though we do not assume the
commutativity of this operation. Let X < G, and y<G. Analogously as
in Section 1, we write

(4) X? = {geG: |g|alx| = 0 for each zeX}.

The set X° will be called a polar of G. We put (X%’ = X%. The set
{y}* is said to be a principal polar of G. The polars of a lattice ordered
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group have been investigated in [6]. Each polar X° of @ is an l-subgroup
of G; moreover, X° is a convex sublattice of G, i.e., if 2,,2,¢ X’ ge@,
and 2, < g < 2,, then geX® (cf. [6]).

Let A and B be l-subgroups of @. Assume that @ is a direct sum of A
and B in the group-theoretical sense (with respect to the additive notation
we use the term ‘‘direct sum” rather than the term ‘‘direct product’’)
and that

0<ge@, acA, be B, g =a-+b imply a>0, b> 0.
Then we write

(5) G = A®B;

A and B are called direct summands of the lattice ordered group G. The
component of an element ge G in A (respectively, in B) will be denoted
by g(A) (respectively, by g(B)). If (5) is valid, then B = 4° (cf., e.g., [2],
2.3, Proposition 8). From the definition of a direct sum it follows immediate-
ly that if A is a direct summand of @G, then

(1) 915 92€ Gy 91 < 92 = 9:(4) < g2(4),
(ii) gred <= g,(4) =g, = g,(4%) =0,
(iii) 0< 9,6 G = 0<g,(4) < ;.

By (ii) and (iii), for 0 < ge¢ G we obtain

(6) g(A) =sup{aed: 0<a<g}

(for the analogous result concerning Riesz spaces cf. (2) and [56], Theo-
rem 24.5).

An l-subgroup C of G is said to be closed in @ if, whenever C, =
and supC, exists in @G, then supC,e C. Let ge G and let C(g) be the set
of all closed convex l-subgroups of @G containing the element g. Then the
l-subgroup C, = (G (G;eC(g)) will be called a principal closed convex
l-subgroup of G generated by g.

A principal closed convex I-subgroup of G that is at the same time
a direct summand of @ is said to be a principal direct summand of G.

Let us consider the following conditions for G:

(x) Bach non-zero closed convex l-subgroup of G contains a non-zero
direct summand of G.

(B) Each non-zero polar of G contains a non-zero direct summand
of G.

(y) Each non-zero direct summand of G contains a non-zero principal
direct summand of G.

(8) If A is a non-zero direct summand of G, then A contains a non-zero
direct summand 4, of @ such that A4, is a principal polar of G.
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We shall investigate relations between those conditions; the result
can be expressed by the diagram

(B)
/' )
Ui

where = denotes the implication.

We have already remarked that each polar of G is convex in G; more-
over, each polar of G is closed in G (cf. [6]). Hence (&) = (B).

LEMMA 4. Let A be a principal polar of G and let B be a direct summand
of G such that B < A. Then B is a principal polar of G.

Proof. According to the assumption there is ae@ with A = {a}*.
Without loss of generality we may suppose that a > 0. From the defi-
nition of the polar (cf. (4)) it follows immediately that for any X and Y <« @
we have

(5") XcY=>X'>Y°

Let P(@) be the set of all polars of G and let P(G) be partially ordered
by the inclusion. Sik [6] has proved that P(@) is a Boolean algebra and
that, for each Ze P(@), the set Z° is a complement of Z in P(@). Therefore,

( 6' ) ded — Xd

holds for each X c @G.

Since B is a direct summand of G, it is a polar of @, and hence there
is- X « @ with X° = B. Thus by (6") we obtain B* = B.

Put a(B) = b. Then {b} c B, and hence, by using (5') twice, we get

(7) {}* = B%.

| We intend to show that the relation

(8) B® > (b}

is valid. By (5’) and (6’), relation (8) implies
(9) B’ o {b}’

and, conversely, from (5') it follows that (9) impli:as (8). Hence it suffices
to verify that (9) is valid.

For any subset Z of G put Z* = {ze Z: 2> 0}. Let Z, and Z, be l-sub-
groups of G with Zi < Z;. Let ze Z, and write 2, = 2v0, 2, = —(2A0).
Then z,, 2,¢ Z; and 2z = 2,—2,¢Z,. Hence Z, c Z,. Therefore, if T,
and T, are l-subgroups of @G such that T, ¢ T,, then T} & T;.

Suppose that relation (9) does not hold. Then, since B’ and {b}°
are l-subgroups of @, there is an element g, 0 < ge {b}°, such that g¢ B°.

\
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Since B is a direct summand of G, we have
G = BOB’, ¢ =g(B)+g(B’).

By (iii), g > ¢g(B) > 0, and g > ¢(B°) > 0. Since g¢ B’, we infer from (ii)
that g(B) > 0. Write g(B) = g,. Since {b}’ is a convex l-subgroup of @
and ge {b}’, we get g, {b}’.

Clearly, g, B c A. Since A = {a}*, a > 0, we must have g,Aa > 0.
Let us put

(10) NinG = Gs.

Then 0 < ¢, < ¢, and, since B is a convex sublattice of @G, we obtain
g:€ B. Hence, by (ii), g,(B) = ¢, and g,(B) = g;. By (10) we get

g1(B)aa(B) = g,(B),
whence
glAb = gz > 0.

Therefore, g,¢ {b}’, which is a contradiction. Thus relation (9) is
valid. This implies that B = B® = {b}*.

Remark. The assertion of Lemma 4 fails to hold if we suppose only
that B is a polar of G. For example, let G, be the set of all real functions
defined on the interval [0,1]. For f, ge G, we put f<g if f(z) < g(o)
for each xe[0,1]. Then G, is an additive lattice ordered group. Let K
be the set of all constants of G, (i.e., the set of all fe G, such that f(t,)
= f(t,) for each pair %, {,¢ [0,1]). We denote by f' the function such
that f'e K and f*(0) = 1. For every ze [0, 1]let f,« G, be such that f,(z) =1
and f,(t) = 0 for each te [0, 1], ¢ # . Let G be the I-subgroup of @, gen-
erated by the set KU{f,: ¢ [0, 1]). Put A = @. Then 4 = {f'}*, whence 4
is a principal polar of G. Let M = {f,: we [0, }]}. and B = M’. We have
B = A and the polar B is not principal in G.

The proof of the following theorem is analogous to that of Theorem 1.
THEOREM 2. For each lattice ordered group G, condition (B) implies (3).

Proof. Let G be a lattice ordered group fulfilling () and let 4 be
a non-zero direct summand of G. There is an a, 0 < aeA. Therefore, by (5'),
{0} # {a}® < A%. Since 4 is a direct summand, it is a polar, and thus
A® = A. Since @ fulfils (B), there is a direct summand B of @ such that
{0} # B c {a}*. By Lemma 4, there is be B such that B = {b}*’. Hence @
satisfies condition (9).

COROLLARY 1. For each lattice ordered group G, condition («) implies (3).

THEOREM 3. Let G be a lattice ordered group fulfilling (), and let A
be a mon-zero direct summand of G. Then the following conditions are equi-
valent:

(a) A i8 a principal polar in G;

(b) A i8 a principal closed convex l-subgroup in @.
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Proof. Suppose that A is a principal closed convex Il-subgroup of G
generated by an element a. Since A is a direct summand, it is a polar
of @ and hence A%¥ = 4. From acA and from (5') we infer that {a}* < A.
Since {a}* is a closed convex l-subgroup of G containing a, we have
A c {a}®. Thus A = {a}* is a principal polar in G.

Assume that A is a principal polar in G, A = {a}*. Let A, be the
principal closed convex Il-subgroup of G generated by the element a.
Then A4, = A. Since G fulfils («), there exists a non-zero direct summand B
contained in A,. Let 8§ be a system of non-zero direct summands of G
contained in 4,. The system S will be said to be maximal disjoint provided
that

(i) BynB, = {0} for each pair of distinct elements B,, B, of ' S;

(ii) if B, is a non-zero direct summand of G contained in A, and
if By¢ 8, then there is B,;e S such that B,NnB, # {0}.

From the Zorn Lemma it follows that there exists a maximal disjoint
system 8 = {B;: ie I} of non-zero direct summands of G contained in 4,.

Without loss of generality we may suppose that a > 0. Put a; = a(B;)
for te I. Then 0 < a;< a for each ieI. Suppose that there exists a’ <G
such that a; < @’ < a for each ie I. From the convexity of 4, it follows
that a’'c¢A4,, and hence 0 <.a—a' = a’'ecA,. For each ie I we have

a; = a;(B;) < a'(B;) < a(B;) = a;,

whence a’'(B;) = a(B;) and thus a’'(B;) = 0. By this and by (6) we obtain
|b;Jaa’” = 0 for each b,e B; and each ie I; therefore
(11) B,c {a"}® for each iel.

Write € = {a"'}*NA,. The set C is a closed convex l-subgroup of @
and a''e ¢, whence C == {0}. Thus, according to («), there is a non-zero
direct summand B, of G contained in C. From (11) it follows that B;nC
= {0} for each i¢e I and, consequently, B;NnB, = {0} for each ¢e I, and

B, c A,. This contradicts the maximality of S. Hence no element a'< G
with the above-mentioned properties can exist and, therefore,

(12) a=Va; (tel).

Let 0 <xed. Put o; = x(B;) for each ieI. We have 0 <z, <.
Suppose that there is '« @ such that #; < &’ for each ie I, and 2’ < z.

Put 2 —2’ = a’’. Analogously as for the element a’’, we can now verify
that

(11') B;c {z"}

is valid for each ieI. From (11’) it follows that a,ana’”’ = 0 holds for
each ie I, and hence, by (12),

ang’ = (Va)az" = V(a;az") =0.
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2

Hence "< {a}’ and thus, since ="’ # 0, "¢ {a}* = A, which is a
contradiction. Therefore

(13) Vo, = x.

Since z;¢ B; = A, and A, is a closed I-subgroup of &, we infer from (13)
that xeA,. Hence A = A,, and so A is a principal closed convex l-sub-
group of G.

By Theorem 3 and by Corollary 1 we obtain
COROLLARY 2. For each lattice ordered group @, condition («) implies ().

Remarks. 1. Condition (B) does not imply («). For example, let
G = RoR, where the symbol o denotes the lexicographic product (cf. [3])
and R is the additive group of all reals with the natural linear order.
Since G is linearly ordered, each non-zero polar in G coincides with @G,
and so does each non-zero direct summand in G; thus (B) is valid. There
exists a closed convex l-subgroup of G that is distinct from G; hence (x)
fails to hold.

2. Condition (B) does not imply (y). For example, let A be the set
of all negative integers (with the natural order). For each Ae Alet A; = R,
and let G =TI, 4,4, be the lexicographic product of linearly ordered
groups A, (cf. [3]). Again, @ is linearly ordered, and hence each non-zero
polar of G coincides with G; thus (8) holds. Let 0 +# ae G. There is 4,e 4
such that a(1,) # 0 and a(4) = 0 for each 1e 4, 1 < 4,. Then the principal
closed convex l-subgroup of G generated by the element a -consists of
all elements be G with b(A) = 0 for each 4 < A4,. Thus each principal
closed convex Il-subgroup of G is distinct from G; therefore, (y) does not
hold. :

3. The same example shows that (3) does not imply (y).

4. Condition (y) implies (3). In fact, suppose that (y) holds for @
and let A be a non-zero direct summand of ¢. According to (y), there
exists a direct summand B of @ with B < A such that B is a principal
closed convex I-subgroup of G generated by an element b, 0 # be B.
Since {b}*is a closed convex I-subgroup of @ containing b, we have B = {b}*.
On the other hand, because B is a polar and be B, we get {b}* = B. Thus
B = {b}* and (3) is valid.

5. Let L be a Riesz space. Then L can be considered as a lattice
ordered group (if we disregard the multiplication of elements of L by
reals); hence all notions introduced for lattice ordered groups can be
applied for L. If A is a band in L, then, clearly, 4 is a closed convex
I-subgroup of L. Let A, be a closed convex l-subgroup of L considered
as lattice ordered group. To verify that A4, is a band in the Riesz spacé L
it suffices to show that if ac A4, and ae R, then aaeA,. Let n be a positive
integer with » > |a|. Then nl|aled; and —nla| < aa < nla|. Hence, by
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the convexity of A4,, the element aa belongs to A, ard, therefore, A,
is a band in L. Obviously, each projection band in L is a direct summand
in L considered as a lattice ordered group. Let B be a direct summand
of the lattice ordered group L. Then B* = B, and thus B is a closed
convex l-subgroup of L and B is a band of L. Moreover (cf. (6) and (2)),
B is a projection band in L. Thus Corollary 2 yields a new proof of
Theorem 1.
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