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CHARACTERIZATIONS OF THE SPHERE BY THE CURVATURE
OF THE SECOND FUNDAMENTAL FORM

BY

THOMAS HASANIS (I0ANNINA)

1. On an ovaloid S8 with Gaussian curvature K > 0 in a Euclidean
3-dimensional space E?, the second fundamental form II defines a positive-
definite Riemannian metrie, if appropriately oriented. We denote by K,
the Gaussian curvature of the second fundamental form, and by H the
mean curvature of S. Many authors were concerned with the problem
of characterization of the sphere by the curvature of the second funda-
mental form. A good result in this direction has been proved in [3]. In
[3] it is shown that an ovaloid S in E? such that K;; = cH*K", where
¢, 8, r are constants and 0 << s <1, is a sphere. I think that an ovaloid
with K;; = cH®*K'", where ¢,s, and r are constants, is a sphere. The
purpose of this paper is to prove the above conjecture in the case where
0 < r< } and ¢, s are arbitrary constants.

Let I'f, V and I}, Vy; denote the Christoffel symbols and the
first Beltrami operator with respect to the first fundamental form I and
to the second fundamental form II, respectively. Then the functions T'j
=TI¥ — 'Y, are components of a temsor ([1], p. 33). Using the second
fundamental tensor b;; for “raising and lowering the indices” we infer
([51, p. 232) that Ty, = Tyby is totally symmetric and

1

1
(1) Ky =H+ET¢jkTm‘— 3K

l7][I-K ’

which implies easily ([2], p. 7) the equality
1 H\ 1 _(H?
(2) 2H (K — H)(H*—K) = -2—KI7H(H, —f)—z 7(7{—, K).

2. First we prove a lemma which generalizes a theorem in [6], p. 240.

LEMMA 2.1. Let 8 be a convex surface in E* (not mecessarily closed).
If the function H*|K attains a relative maximum on S, then there ewists
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Proof. Let P, € 8 be a point at which the function H?/K attains a
relative maximum. Then there exists a neighbourhood U of P, such that
2 H2
A (Po) (P) for all Pe U.
If (H*|K)(P,) = 1, then all points of U are umbilics and the neighboui'-

hood U is a piece of sphere, and thus K;; = H on U. Let (H?*/K)(P,) > 1.
Since P, is a critical point of H?/K, it follows from (2) that

(-KII (Po) —-H(Po))(H2 (Po) "K(Po)) =0 or Ky(P,) = H(P,)
(since H?*(P,) > K(P,) by assumption).

The following lemma is well known (see [3] and [6], p. 241). Here we
give a new proof of it.

LEMMA 2.2. Let 8 be a convex surface (not mecessarily closed). If P,
18 a eritical point of K or of H, then K (P,) = H(P,).

Proof. If P, is a critical point of K, then from (1) we get K;(P,)
> H(P,), since }T; T > 0. Also, from (2) we obtain easily

(3)
1! H 1 'H
(K —H)(H?—K) = 3 Vinl — — 1K Vi(H, K)__K V(H, K)+ 3K?

If P, is a critical point of H, then from (3) we get

VK.

H
(E11(Po) — H(Py))(H* (Py) — K (Py)) = iz P VE(Po) >0

and thus K;;(P,) > H(P,) because if K;;(P,) < H(P,), then H?*(P,)
= K(P,) or VK(P,) =0, i.e. P, is a critical point of K, and so K (P,)
= H(P,), a contradiction.

THEOREM 2.1. Let 8 be an ovaloid in B, If K1y = ¢H: K", wherec, 8, r are
constants and 0 < r < 4, then 8 is a sphere.

Remark. Obviously, by the Gauss-Bonnet theorem, ¢ must be
a positive constant. Let d4A and dAy; denote the area elements of § with
respect to the first and second fundamental forms. Then it is obvious

that dA;; = YV KdA. Then by the Gauss-Bonnet theorem we have

JEa4 = [Eyddy = [EqVEdA = 4n
or
(4) [VEWE—Ey)dd =o.

Proof of Theorem 2.1. For a critical point P, of H it follows from
Lemma 2.2 that

¢cH’(Po) K™ (Po) = H(P,) or cH*(P,)H"(P,) > H(P,)
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(since H*" > K'), and thus
(5) cH - 1(P)) > 1.

We distinguish two cases:

Case 1. Let 8+2r—1>0. In this case we choose as P, a point
such that

H(P,) = minH(P)
PeS

(at least one such P, always exists, since S is closed and H is a continuous
function). Then by (5) we have

{6) cH®****"! >1  everywhere on §.
Case 2. Let s+2r—1 < 0. In this case we choose as P, a point
such that

H(P,) = supH(P).
PeS

Then by (5) we also obtain (6).
Now, from (6) we conclude that in every case we have cH**¥~1 > 1 or

(1) oH* > H,l,_l

But 0<r< 3} or 2r—1<0, and thus

everywhere on S.

1 1
Hzr—l > Kr—-llz *

H2r—1 < Kr—-l/:! or

Then by (7) we obtain ¢H?® > 1/E™-¥2 or ¢H*K" > VK, or E;>VE
everywhere on S. Finally, from (4) we get K;; = l/K, and by a theorem
in [4], p. 177, we conclude that 8 is a sphere.

3. It is well known (see [4], p. 177) that an ovaloid in BE® with K;p
=VEK is a sphere. In this section we give a theorem which contains in
some way a generalization of the above result.

THEOREM 3.1. Let S be a complete and conver surface in E* with Ky
< VK. If the function H2/K attains its mazimum, then S is a sphere.

Proof. Let P, eS8 be a point at ‘which the function H?*/K attains
its maximum. By Lemma 2.1 we have VE(P,) > Ky(P,) = H(P,),
which means that P, is an umbilic point, and thus (H?/K)(P,) = 1. Since
at P, the function H*/K attains its maximum, we have (H?*/K)(P) =1
for all P € 8, i.e. all points of S are umbilics. Since S is convex and com-
plete, it must be a sphere.
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