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Given a subset E of the integers, let I2 be the space of all functions f in
L?(T) whose Fourier coefficients f(n) vanish off the set E. It is shown that E
is a uniformizable A (2) set if and only if the functions |f|? for f in the unit
ball of IZ form a uniformly integrable family. It follows that if E is a
uniformizable A(2) set, then there is an Orlicz space L®(T) strictly smaller
than L?(T) such that I%c L®(T). Some other characterizations of
uniformizability of A(2) sets are also given. Finally, the relationship between
this property and 2-associatedness is explored.

1. Uniformizability. We review some of the notions considered here;
see [6] for more details. Our results hold for all compact abelian groups, but
we state them here for the unit circle T. Call an integrable function f on T
an E -function if { vanishes on Z\ E, the complement of E in the set Z of all
integers. Call f an E - polynomial if it is a trigonometric polynomial that is
an E-function. Call E a A(2) set if there is a constant c(E) so that
IIfll2 < c(E)||flly for all E-polynomials f. An alternate characterization of
A(2)-ness is that every E -function, which a priori lies in L' (T), belongs to
L*(T). We need a dual characterization [11, § 5.3]: A set E is a A(2) set if
and only if there is a constant c(E) so that for each function v in [?(E) there
is a continuous function g with

(i) gl < c(E)llvll2,
(ii) g(n)=v(n) for all nin E.

There is no direct requirement here on g|(Z\E), the restriction of g to the
complement of E; note, however, that it follows from conditions (i) and (ii)
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that
(1) Ig1(Z\ E)ll2 = [(lgll2)* = Ivll2)*1"* < [c(E)* = 13"*|vll,.

Call E a uniformizable A(2) set if for each number & > 0 there is a
constant c(E, €) so that for each function v in [*(E) there is a continuous
function g satisfying conditions (i) and (ii)) above, with c(E) replaced by
c(E, ¢), and also satisfying the condition

(i) lg1(Z\B)ll < elloll,-

This notion was introduced by R. C. Blei [2]. Every set that is known to be
a A(2) set is known [2, Lemma 2.2] to be uniformizable; moreover, it is easy
to see that the union of a A(2) set and a uniformizable A(2) set is a A(2) set.
This connection with the, as yet unsolved, union problem for A (2) sets is one
of the main reasons for studying uniformizability of A4(2) sets, but the notion
was in fact introduced [2] for other purposes. The present paper is
concerned with the connection between this property and other more
familiar properties of thin sets.

Identify the unit circle T with the interval [0, 2r), carrying the measure
dt/2n; given a measurable subset S of 7, denote the measure of S by |S].
Recall that a family # of functions on T is called uniformly integrable [10,
§ 3.1] if for each number & > O there is a number 4 > 0 such that [|f| <e for

S

all measurable sets S with |S| < J. Finally, see [S] for basic facts about
Young functions and Orlicz spaces; we use the Luxemberg norm on Orlicz
spaces, so that some of the inequalities that we write differ by a factor of 2
from those in [5].

Given a subset E of Z, let #; be the family of all functions |f]? with f
in the unit ball of I2.

THEOREM 1. The following properties of a set E of integers are
equivalent

(a) E is a uniformizable A(2) set.

(b) The family g is uniformly integrable.

(c) There is a Young function @ with the property that ®(x)/x*— o
as x— oo for which L% < L®(T).

Proof. We need another characterization of uniformizability.

LEMMA. In order that E be a uniformizable A(2) set, it is necessary
and sufficient that for each number ¢ > O there exist a constant C(E, &) such
that for each function f in L% there is a function g in L®(T) satisfying the
conditions:

M l9llo < C(E, &)lIfll2,
Iy llg—fll2 < ellfllz.
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Although we will not use this fact in the sequel, we remark that there is
no mystery about the best choice of the function g, given the function f and
the constant C; to minimize |[g—f]||, among all functions g with
9lle < CIlfllz=M say, let g=f on the set where |f| <M, and let
g = (sgn f)-M elsewhere.

We first show how the theorem follows from the Lemma, and then we
prove the Lemma. We suppose first that E has property (a). Given a function

f in #¢ and a number ¢ > 0, we apply the Lemma with ¢ replaced by \/5/2)

to get a function g so that |jg||, < C = C(E, \/5/2) and |lg—fll, <\/E/2.
Then for each measurable subset S of 7, we have that

(ilflz)”2 < (glglz)"2+\/5/2.

So, the requirements for uniform integrability of the family %, are clearly
satisfied with & = ¢/(4C?).

Suppose next that E has property (b). Let ¢ and f be as in the Lemma.
Suppose without loss of generality that ||f||, = 1. For a value of C to be
specified later, let S be the set where |f| > C. Then let g =0 on S, and let
g = f elsewhere. Certainly, condition (I) holds. Also,

llg—fll2 = (glflz)”z-

The uniform integrability of 4%, guarantees that the quantity above is at
most ¢ provided that |S) < é for a suitable positive constant 8(¢2). On the
other hand, by Chebyshev’s inequality, |S] < 1/C2. Now specify that
C= 1/\/5. Then condition (II) is satisfied, and by the Lemma, E is a
uniformizable A(2) set.

We deal next with the equivalence of conditions (b) and (c). This is
essentially known [10, § 3.1], in a slightly different formulation. Suppose first
that the family % is uniformly integrable. By [10, Theorem 3.1.2] there is a
“strongly convex” function ¢ and a positive constant M so that

[olfH<sM

for all functions f in the unit ball of I2. Let @ be a Young function with the
property that @(x) = ¢(x?) for all sufficiently large values of x. Then the
inequality above guarantees that IZ < L®(T); moreover, the “strong
convexity” of ¢ implies that &(x)/x>— o0 as x — oo.

Suppose, on the other hand, that the set E has property (c). Since
convergence in L% and in L®(T) each imply convergence in measure, the
closed-graph theorem guarantees that the inclusion L% L®(T) is
continuous. Thus there is a constant M so that [®(f|/M)<1 for all
functions f in the unit ball, B; say, of LZ. The argument in [10, § 3.1] then
shows that the family of all functions (|f|/M)* as f runs through B is
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uniformly integrable. Therefore the family % is also uniformly integrable.
This completes the proof of the theorem.

We now prove the Lemma. Suppose first that E is a uniformizable A(2)
set. Fix a number ¢ > 0. Let feI2, and let v be the restriction of f to E. By
the uniformizability of E, there is a continuous function g satisfying
conditions (i), (ii), and (iii) in the definition of uniformizable A(2) set. In
particular, the fact that g|E = f|E implies that

g =7l = g =NI(Z\E)l,
=||gl(Z\E)|l;, because f is an E -function,

< ellfll;-

Hence llg—fll. <ellfll as required. Moreover, condition (II) holds with
= c(E, ¢).

Conversely, suppose that E satisfies the conditions specified in the
Lemma. Fix a positive number ¢ and a function v in [*(E). Let f; be the
function in IZ with f;|E =v. Apply the conditions in the Lemma with ¢
replaced by &/4 to get a function, h; say, in L®(T) with the properties:

I Ihill, < C(E, /4 fill2,
(Ir) lhy =fill2 < /DAl

Choose a trigonometric polynomial, P, say, with ||P,||, <||hll,, and
1Py —hyll; < (¢/4)]Ifill2. Then

IPill, < C(E, &/4) Il fill2,

1P, —fill2 < (¢/2) | full2-

Let f, be the function in I2 with f,=f,—P, on E. Then
[1f2l2 < (¢/2) ]l fill2. As above, choose a trigonometric polynomial P, so that
IP2ll, < C(E, ¢/4)||f2ll2, and [|[P;—=f5ll, < (¢/2)]1 f2ll.- Let f3 be the function
in I2 with f; = f,— P, on E, and continue in this fashion to obtain a
sequence (P,)X, of trigonometric polynomials such that

IPJlo < C(E, e/4) (/2" ! [lvll,
and such that
(2) Il(fllE— ,lE)“z (&/2)" llvl.

There is no loss of generality in assuming that ¢ < 1. In that case, the series

Z P, converges uniformly to a continuous function, g say, with

" C(E, 54)

ey Pl

"g”w =
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It follows from inequality (2) above that g|E = f,|E = v. Finally,

IGIZ\Bl2 < Y I1fa—Pdll2 < Y (/2" 0]l
n=1 n=1

g2
T 1—¢/2

which is at most ¢]lv||,, because ¢ <1 here. This shows that E is a
uniformizable A(2) set, with ¢(E, ¢) < C(E, ¢/4)/(1 —¢/2).

Remarks. 1. In an announcement [John J. F. Fournier, Abstracts
of Papers Presented to the American Mathematical Society 4 (1983), # 805-
43-86] of these and other results, it was erroneously stated that E is a
uniformizable 4 (2) set if and only if

(d) There is an Orlicz space L®(T) strictly smaller than L?(T) such that
L2 < L%(T).

In fact, it does not seem to be known whether this equivalence holds.
The condition that &(x)/x*— o as x— oo does imply that the inclusion
L®(T) < L*(T) is strict; so, by part (c) of Theorem 1, uniformizability implies
condition (d). There are examples, however, of Young functions & for which

lloll2,

0 < lim inf @ (x)/x? < lim sup ®(x)/x? = .

X = X =

Then L®(T) is strictly included in L?(T), but it is not clear whether the
inclusion IZ < L®(T) for such a Young function & implies that E is
uniformizable, or even that E is a A(2) set.

2. G. Pisier observed in [2, Lemma 2.2] that if E is a A(q) set for some
index g > 2, then E is a uniformizable A(2) set. This is a special case of the
implication (c) = (a) above, while the implication (a) = (c) is a partial
converse to Pisier’s observation.

3. As noted in the introduction, E is a A(2) set if and only if
L; < L*(T). On the other hand, it follows easily from Theorem 1 that E is a
uniformizable A (2) set if any only if Ly < L®(T) for some Young function @
with the property that ®(x)/x> - 0 as x — oc.

4. A Young function has the property above if and only if [5, Exercise
3.5.13] the complementary Young function, ¥ say, has the property that

(3) x}/P(x)> 0 as x— .

By a standard duality argument [6, 5.3 (vi)], E is a uniformizable A (2) set if
any only if there is a Young function ¥ with property (3) for which
fIEeP(E) for all functions f in L¥(T).

5. Observe that if ¢ = 1, then conditions (I) and (II) of the Lemma are
trivially satisfied with g = 0. Given a subset E of Z, let S(E) be the set of all
numbers ¢ for which for each function f in L2 there is a function g in L®(T)
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satisfying conditions (I) and (II). Let ¢(E) = inf S(E). Then 0 <¢(E) <1 for
all sets E, and, by the Lemma, E is a uniformizable A(2) set if and only if
e(E) = 0. It is interesting that

4) Eis a A(2) set < ¢(F) <.

This characterization of A(2)-ness seems to be new, although an analogous
condition is known [1] to be necessary for E to be a A(1) set. We omit the
proof of assertion (4), but we note that it may be useful in dealing with the
union problem for A(2) sets. Indeed, it easy to show that

e(EUF) < [e(E)*>+¢(F)*]V?,

for all pairs of sets E and F. It is immediate that if E is a uniformizable 4(2)
set, and F is a A(2) set, then EUF is a A(2) set. Even if neither E nor F is
uniformizable, their union is a A(2) set if ¢(E) and &(F) are small enough.
The family of A(2) sets is usually parametrized by the A(2)-constant, which
for a given set E is defined to be the infimum, c(E) say, of the numbers C for
which it is true that || f||, < C||f]|, for all E - polynomials f. It can be shown
that e(E) < [1—1/c(E)*]"2. 1t follows that if c(E)"2+c(F)"2> 1, then EUF
is @ A(2) set. In order for this inequality to hold, however, it is necessary that
at least one of c(E) and c(F) be strictly less than ﬁ Unfortunately, most

A(2) sets have constants much larger than ﬁ
6. The parameter ¢(E) defined above also has a dual characterization.
Consider inequalities of the form

(5) IPll2 < ClIP+Qll, +nlP+Qll;,

where P is an E-polynomial, Q is a (Z\E)-polynomial, and C and n are
positive constants. Then ¢(E) is the infimum of the set of numbers n for
which there is a constant C such that inequality (5) holds for all such
polynomials P and Q.

2. Two-associatedness. Next we investigate the connection between
uniformizability and 2 -associatedness. Let E be a subset of Z, and S be a
measurable subset of T; denote the indicator function of S by 15. Recall [6]
that E is said to be strictly 2-associated with S if there is a constant x
so that ||P||, < x|/ 15 P||, for all E-polynomials P. Also, E is said to be
2-associated with S if E has a finite subset, F say, so that E\F is strictly
2-associated with S. Finally, we say that E tends to infinity if the difference
between successive elements of E tends to infinity.

THEOREM 2. Suppose that E is a uniformizable A(2) set, and that E is
strictly 2 -associated with S; then there is a number 6 > 0 so that E is strictly
2-associated with every measurable set S, for which |S\S,| <é. Suppose
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further that E tends to infinity; then E is 2-associated with every measurable
set of positive measure.

Proof. Let E be uniformizable and strictly 2-associated with S. Then
there is a constant x so that

fIP2 > 1/x?

S

for all E-polynomials P with ||P||, = 1. Since the family % is uniformly

integrable, there is a positive number é so that if R is a measurable set with

IRl <6, then [|P|><1/2x*> for all such functions P. Suppose that
R

IS\S;] <d; then, for all such P,

1 1 1
P2 = (|P]?- PP>——— =
s{ll !Il S\LI I e kw2

So, E is strictly 2-associated with §,.
Let us say that two sets E and S are very strongly 2-associated if for
each number 4 > 1 there is a finite set F so that

1
SU1? < < 17 OF 5 < 2017117

NE

for all (E\F)-polynomials f; in other words, for all such functions f, the
average of |f|? over the set S is nearly equal to its average over all of T. It
was shown by Zygmund [9, Theorem V.6.10] that the classical lacunary sets
are very strongly 2-associated with every set of positive measure; the same
argument [3, p. 396] shows that every A(4) set that tends to infinity has this
property.

We now use Theorem 1 to show that every uniformizable A(2) set that
tends to infinity is very strongly 2-associated with every set of positive
measure. To this end, fix such a subset E of Z and a measurable set S of
positive measure. For a value of N to be specified later, let Py be the Fejer
mean of order N of the Fourier series of 15. Given N, choose a finite set F so
that successive terms in the set E\F all differ by more than N. Then
(Py-f) (n) = Py(0) f(n) = |S| f (n) for all (E\F)-functions f and all integers
n in (E\F). So,

1 -~ -~
6 2 _ . . — 2
(6) ISIJ Pylfl S ,g\p I(Py-f) (n)- f(n)] = (I fl2)

for all such functions f.
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1 )
Our goal is to show that E 15-1f)? is nearly equal to (||f]l,)*> By

T

1 .

formula (6), we know that the latter quantity is exactly equal to N JP~'| f12
T
So, it suffices to show, given ¢ > 0, that N can be chosen so that

I!PN'IfIZ_ ils‘|f|2| <e|S| (A1)

for all E-functions f. To this end, recall that in the proof of Theorem 1, the
Young function @ in part (c) had the form @: x — ¢(x?), where ¢ was a
suitable “strongly convex” function. Suppose, without loss of generality that
¢ itself is a Young function, and thus has a conjugate, ¢ say. Define a Young
function B by letting B(x) = ¥ (x?) for all x. Since {IFG| < 2 for all functions
F in the unit ball of L*(T) and G in the unit ball of L¥(T), it is also true that
f1f91> <2 for all f in the unit ball of L®(T) and all g in the unit ball of
LB(T). Thus,

Ifgll2 < /211 lollglls

for all measurable functions f and g.

Recall also that the imbedding 12 — L®(T) is continuous, with norm M
say. Since the function 15 is bounded, it can be approximated arbitrarily -
closely in the L®-norm by continuous functions: it follows that [|Py— l4l|g
—+0 as N—o00. Given a number ¢ >0, choose N so that ||Py— 145

< £ISI/( /2 M). Then,

[§1s- 1712 = [ Pa-1f1?] < [I1s=Pullf1?
T T T

< l(1s=Py)- fll2 11 £112
< V25— Palls I f 1ol f1l2
<

V2EISU/2M)M A1) I1f 12
<elsl(f12)>,

as required.

Remarks.” 7. As noted at the beginning of the paper, our results hold,
with the same proofs, in the context of compact abelian groups. See [6] for
the appropriate extension to this context of the condition that E tend to
infinity. Some such hypothesis is needed in the second part of Theorem 2 in
order for that part of the theorem to be valid for all compact abelian groups,
but it is not known whether such a condition is necessary on T and other
connected groups. Also, on connected groups, the argument in [3, Theorem
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1V.4] and the first part of Theorem 2 show that if a uniformizable set E is 2-
associated with a set S, then it is strictly 2-associated with S; so, the
conclusion of the second part of the theorem can be strengthened in another
way. .

8. The theorem above is motivated by some observations of Bonami
[3]. She proved the first conclusion of Theorem 2 under the assumption that
E is a A(q) set for some index q > 2, and the second conclusion of the
theorem under the assumption that E is a 4(4) set that tends to infinity. On
the other hand, the results in the present paper were obtained before the
author learned about the work of Miheev [9, 8, 7], which appeared after
Bonami’s paper, and which includes results that, in some cases, are stronger
in one important respect than the second part of Theorem 2. It is shown by
Miheev in [8] that if a subset E of the integers is a A (p) set for some index
p > 2, then E is 2-associated with every measurable set of positive measure
in the circle group. There is no requirement in this theorem that E tend to
infinity! As noted in Remark 2 of the previous section, every set that is A(p)
for some p > 2 is a uniformizable A(2) set, but it is not known whether the
converse holds, so that our theorem may apply to some sets not covered by
Miheev’s theorem. Every set that is known to be a A(2) set is, however,
known to be a A(4) set too, so this weakening of hypothesis may be purely
formal. It is not clear to what extent Miheev’s methods also work for general
compact abelian groups; as noted above, some version of the hypothesis that
E tend to infinity is definitely needed for some groups. My student Kathryn
Hare has recently used some of the methods in [6, Chapter 8] to show, for
any compact abelian group, that if a uniformizable A(2) set, E say, is a union
of finitely-many sets that tend to infinity, and if E is “almost X,-
transversal” [6, 8.2] for all finite subgroups X, of the dual group, then E is
2 -associated with every set of positive measure.

9. Our hypothesis that E tend to infinity is necessary for our conclusion
that E be very strongly 2-associated with every set of positive measure. To
see this, let S be any measurable set whose complement has positive measure.
Since the indicator function of S° can be approximated arbitrarily - closely in
the L?>-norm by trigonometric polynomials, there is, for each number C,
such a polynomial P with ||P||, > C||P-14||,. Let F be the finite set of
integers where P30, let D be an infinite Sidon set, and let E be the
algebraic sum F+D. Then E is a Sidon set, and a fortiori a A(p) set for all
p < . Let E’ be any set obtained from E by deleting a finite subset. Then
for most integers n in D it is the case that F+n < E'. For any such integer n
the polynomial P, given by P,(t)=¢™P(t) has the property that
|P,ll, > C||P," 15]|l,. To summarize, for each set S as above, there is a Sidon
set E so that E and S fail to be very strongly 2-associated.

10. Say that E is strictly (2, 1)-associated with S if there is a constant x»
so that ||P||, < x||15- P||, for all E-polynomials. There is an alternate proof
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of the second part of Theorem 2, based on the definition of uniformizable
A(2) set rather than on Theorem 1, that produces a finite set F for which
E\F is strictly (2, 1)-associated with S,. In fact, however, if a uniformizable
A(2) set is strictly 2-associated with S, then the set must be strictly
(2, 1)-associated with S. One way to prove this is to combine the first part of
Theorem 2 above with the observation made in [4, Remark 4] that if there is
a number 4 > 0 for which a given uniformizable A(2) set E is strictly 2-
associated with every measurable set S, for which |S\S,| <4, then E is
strictly (2, 1)-associated with S.

11. Fix a T* summability method as in [12, § [II.1]. The notion of
2 -associatedness is useful in showing [12, § V.6] that the classical lacunary
trigonometric series have the property that if such a series is bounded T* at
almost every point on the circle, then the series is square - summable. It is
easy to see that if this implication holds for all series with frequencies in a
given set E, then E must be a A(2) set. Conversely, if E is a 4(2) set, and a
series with frequencies only in E is almost -everywhere bounded T*, then the
series is square-summable. This follows from a result in [4, Theorem 1],
asserting that E is a A(2) set if and only if there is number ¢ > 0 so that E is
strictly 2 -associated with every measurable set of measure greater than 1 —e.

12. There are situations [12, V.6.10] where, for real-valued lacunary
series, one -sided boundedness T* on a set of positive measure implies that
the series is square -summable. A glance at the argument in [12] shows that
this implication holds for such series with frequencies only in Eu(—E)
provided that Eu(—E) is (2, 1)-associated with every set of positive
measure. A sufficient condition for the latter implication is that E be a
uniformizable A(2) set that tends to infinity.

Added in proof. Some of the questions mentioned in Remarks 7 and 8
have been answered by Kathryn E. Hare in her Thesis Thin sets and strict
two-associatedness.

REFERENCES

[1] G. F. Bachelis and S. E. Ebenstein, On A(p) sets, Pacific Journal of Mathematics 54
(1974), p. 35-38.

[2] R. C. Blei, Multidimensional extensions of the Grothendieck inequality, Arkiv for Mate-
matik 17 (1979), p. 51-68.

[3] A. Bonami, Etude des coefficients de Fourier des fonctions de L”(G), Annales de Plnstitut
Fourier (Grenoble), 20 (1970). p. 335-402.

[4] J. ). F. Fournier, Two observations about 2 -associatedness, preprint, 1982

[5] A. Kufner, O.John and S. Fuéik, Function Spaces, Noordhofl International Publishing,
Leyden 1977.

[6] J. M. Lopez and K. A. Ross, Sidon Sets, Lecture Notes in Pure and Applied
Mathematics 13, Marcel Dekker. New York 1975.



UNIFORMIZABLE A(2) SETS 129

[7] I. M. Miheev, Lacunary subsystems of the Walsh system of functions, Siberian Mathe-
matical Journal 20 (1979), p. 79-86; translated from Sibirskii Matemati€eskii Zurnal 20
(1979), p. 109-118. .

[81 —, On lacunary series, Mathematics of the USSR -Sbornik 27 (1975), p. 481-502;
translated from MatematiCeskii Sbornik 98 (140) (1975), p. 538-563.

[91 —, Uniqueness theorem for series with gaps, Mathematical Notes of the Academy of
Sciences of the USSR 17 (1975), p. 495-503; translated from MatematiCeskie Zametki 17
(1975), p. 825-838.

[10] W. Rudin, Function Theory in Polydiscs, W. A. Benjamin Inc, New York 1969.

[11] —, Trigonometric series with gaps, J. Math. Mech. 9 (1960), p. 203-228.

[12] A. Zygmund, Trigonometric Series, Volume I, Cambridge University Press, Cambridge
1959.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF BRITISH COLUMBIA
VANCOUVER, CANADA

Regu par la Rédaction le 15. 03. 1984

9 — Colloquium Mathematicum 51



