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1. Introduction. Let M be a Riemannian manifold with a (possibly
indefinite) metric g. According to Adati and Miyazawa [1], an n-dimensional
(n = 4) Riemannian manifold M is called conformally recurrent if its Weyl
conformal curvature tensor

1
(1) Chijk = Rup w2 (9ij Rix — gix Raj+ gni Rij— ga; Riy)
e )
(n—1)(n—2) 9ijInk — Gik nj

1S recurrent, i.e.,
(2 Vi Clu‘jk =q Clu‘jk'

Investigating conformally recurrent manifolds, Roter has introduced the
concept of a simple conformally recurrent manifold (s.c.r. in short) and
proved the following results:

THEOREM A (see [6], Theorem 1). A Riemannian manifold (M, g) of
dimension n > 4 is s.cr. if and only if

(1) (M, g) is not conformally flat,

(i) ¥, Chij = a1 Cpijp,

(iii) the recurrence vector a; is locally a gradient,

(iv) the Ricci tensor is a Codazzi one.

THEOREM B (see [6], Theorem 5). Let M be a non-locally symmetric s.c.r.
manifold. If M is not Ricci-recurrent, then

(A) Chiju = ewy; Wy,

where lel =1 and o is a uniquely determined recurrent absolute 2-form
satisfying rankw = 2 and w;, 0"; = 0.
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THEOREM C (see [6], Lemma 8). Let M be a non-locally symmetric s.c.r.
manifold such that

d; Cjx+dx Cpij+d; Cpy; = 0

for some field d; of non-zero vectors. If Cy;j is not of the form (A), then d, ;
= A;d; for a certain vector field A; on M. Moreover, if d;;=d;;, then
rank R;; < 1.

Suppose that a Riemannian manifold M with metric g;; admits a metric
semi-symmetric connection with connection coefficients j',- given by (see [3])

3) I =1 +6"p,—p'g,,

where I'; are Christoffel symbols of M p: is a gradient field such that p; # 0
at least at one point xe M, and p = g" p,. In this paper V denotes covariant
differentiation with respect to I"%. The curvature tensors R* jin Of r % and R,
of I'}; are related by

Rk jin = Rujin— i Gun + % Gjn— %xn i + %jn Gii»

where a; is a tensor field of type (0, 2) defined by
;= V;pi—pipj+3p. P 9ijs Rkjih = Gk R’jih-

Let C,‘,-,-,, denote the conformal curvature tensor relative to the metric semi-
symmetric connection, i.e.,

1
ijih = Rk jih ™ m (Gxn R ji —9jn Rki +9ji Ru — Gki th)

=1 (n-2) (Gxn 9 —Gin 9i)>

where R,, = ¢" R,y and R = g R,,.

An n-dimensional (n > 4) Riemannian manifold is called conformally
recurrent with respect to V if its conformal curvature tensor C’,‘j,.,. satisfies the
condition

(4) ‘°71 Ca jih = &1 th'

If V,Cyjin = 0 everywhere on M and dim M > 4, then M is called conformally
symmetric with respect to the metric semi-symmetric connection.

Investigating Riemannian manifolds satisfying (2) and (4), the author has
proved the following results:

THEOREM D (see [4], Theorem 3). Let M be a Riemannian manifold which
admits a metric semi-symmetric connection (3) such that conditions (2) and (4)
hold. Then ,

(@) piCuijx+ Px Crity+ pj Crirt = O everywhere on M.

(b) If (M, g) is not conformally flat, then a; = a;—2p; and p,p" = 0.
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THEOREM E (see [4], Theorem 4). Let M be a Riemannian manifold which
admits a metric semi-symmetric connection (3) such that the function p satisfies
equation (a). Then

(c) [}: chijk =V, Chijk“zl’l Chijk- _

An n-dimensional (n>4) Riemannian manifold M is called simple
conformally symmetric with respect to the metric semi-symmetric connection
(s.c.s. in short) if M is not conformally flat and satisfies the conditions

(5) l°71 Clu'jk =0, V Chijk =4q Chijk'

The present paper deals with some results on s.c.s. manifolds. It will be
also shown that any s.cs. manifold is necessarily s.c.r.

All Riemannian manifolds (possibly with indefinite metric) considered
below are assumed to be connected and of class C* or analytic.

2. Preliminaries. In the sequel we need the following results:

LemMMA 1. The Weyl conformal curvature tensor satisfies the well-known
relations

©6) Chuijt = = Cinjx = — Chinj = Cjxnis
Ch-jk‘i' Chkij+chjki = 0’ Crijr = C'irj = C’n'j = 0’
, n—3 1
(7 Vo Clipe =-— 'Vtst—VjRu-'z(n—_l)(gu ViR—gu ViR) |.

LemMma 2 (see [5], Lemma 3). If ¢;, @; and B are numbers satisfying
1 Bpijx + @n Biij + @i Bujx + @ Bpis + @5 Bijy = 0,
Byj = Bjxni = — Bpixj»  Buijx+ Buij+ Byjni = 0,

then each b; = c;+2¢; is zero or each By is zero.
LEMMA 3. Let M be an s.c.s. manifold. Then

®) H = C,ijx Chim+ Crrj CTitm + Cirk C jim + Ciijp C'ium = 0.

Proof. Using (a), we can follow step by step a proof of Roter (see [6],
Lemma 6) to obtain (8). .

LEMMA 4. Let M be an s.c.s. manifold. Then
) R R+ Ry, R'imj+ Rj Ry = 0,
(10 Rp Cijx+ Ry, C'ipmj+ R, CTyp = 0.
Proof. By Theorem E and (5), we get
(11) Vi Crijk = 2Py Chijuc-

Contracting (11) with g* we obtain ¥, C";;, = 2p, C";;,. From (a), by. transvec-
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tion with g* and using (6), we find p, C";, = 0. Thus ¥, C";;, = 0. Substituting
(7) into the above equation, we find

1
Vi Rij—' V; Ry = m(gu ViR—gu V; R),

whence, by covariant diffcrentiation, we get
1
(12) ViViR;j—V,V;Ry = m(gij ViViR—gua Vi V;R).

Permuting in (12) the indices j, k, I cyclically, adding the resulting equations
to (12) and using the Ricci and Bianchi identities, we easily obtain (9).
Relation (9), together with (1), leads immediately to (10). This completes the
proof.

LEmMMA S. Every s.c.s. manifold M satisfies the condition

(13) Rm, C'ijk = 0.
Proof. Since V;p; = V;p;, (11) implies
(14 ViVm Ciu'jt- M7 Chijk =0.

Applying to (14) the Ricci identity and using (1) and (8), we obtain
(15)  Rp(@mCiju+ 90 C i+ 91 Cxni + 911 C'jin)
— Ry (Ghm Ciji + Gim Craj + G jm Cxni + Gam C'jin)
+ Ry Coiji + Rit Copsj+ Rjy Coni + Ryt Copjin
—(Rpm Ciijx + Rim Cigj+ Rjm Ciani + Rym Cijin)

R
n—1

[In Comijx + 9it Coumij + 9t Conki + Gkt Comjin

—(9nm Ciijk ¥ Gim Cinkj + Gjm Cixni + Gam Crjin)]-
Contracting (15) with g™ and using (6) and (10), we find

(16) _ (M= Rp C"iju + Riy Cojic = Gim T — G jm T
where T;; = R™C,;;, = T;. Symmetrizing (16) in m, i, we have
17) (M—DR;, Coju + R C'ijx = gi Toj— i Tk -

‘It follows from (16) and (17) that

1
Ruy Cijx + Ry, C ik = = (G Tij—9ij Tk + Gix Tnj— 9mj Tia)»
n

1
R Cij—R;, C oy = =2 (Gmk Tij+ 9ij To — Gix Toj— 9mj Tir)-
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The last two equations show that

1

(18)  RuCip=7o—

[(n—1)(gmx Tij— Gumj Tix) + Gij To — 9ix Taj]-

Transvecting (18) with p* and making use of p’ T,, = 0, we get
(n—1)pm Ty = pi Ty;-
Hence
PiThy=(n—1)p,T;;=(n— 1)?p, T,
and, consequently, T;; = 0. The assertion follows now from (18).
3. Main results. We are now going to derive some consequences of the

above results.

THEOREM 1. Let M be an analytic s.c.s. manifold. Then p, R"; = 0 and the
scalar curvature of M vanishes.

Proof. Transvecting (15) with p™, using Theorem D and Lemma S5,
we get

(n—1) P’ (R Ciip+ R,; Coaj+ R,y Cui + Ry Cijip) = 2Rp; Cup,
which, in view of Lemma 2, implies
(19) (n—=1)p"R,; = Rp;.
Transvecting now (a) with R, and using (13), we obtain
(20) p.R’, =0.

Substituting (20) into (19) we get R = 0. This completes the proof.

ProPOSITION. Let M be an analytic s.c.s. manifold. If Cyy is not of the
form (A), then rank R;; < 1.

Proof. Using Theorem D, Theorem 1 and (15), we can follow step by
step a proof of Derdzinski and Roter (see [2], p. 14) to obtain the assertion.

THEOREM 2. Every analytic s.c.s. manifold M is an s.c.r. manifold.
Proof. It is easily seen that Cy;, # 0. From (c) we have

(21) ViCrie = 2p, Cln‘jk’

where V;p; = V;p,. Contracting now (21) with g* and using (a), we obtain
V,C":x = 0. Substituting the last result into (7) and using Theorem 1, we
obtain Vy R;; = V; R;,. This means that the Ricci tensor is a Codazzi tensor.
Thus Theorem A completes the proof.
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