COLLOQUIUM MATHEMATICUM

VOL. XXIV 1972 FASC. 2

METRIZABILITY OF INVERSE IMAGES OF METRIC SPACES
UNDER OPEN PERFECT AND O0-DIMENSIONAL MAPPINGS

BY

T. PRZYMUSINSKI (WARSZAWA)

In the present paper, all spaces are assumed to be Hausdorff. Notation
and terminology are as in [4]. In particular, by a mapping we understand
a continuous function and f: X —» Y means that f(X) = Y.

The main purpose of the paper is to prove that an inverse image
X of a locally connected metric space Y under open, perfect and 0-dimen-
sional mapping f: X — Y is metrizable if f~'(y) is metrizable for every
y €Y (in fact, the formulation will be a little more general). This is a solution
of Problem 689 raised by Engelking and Lelek in [5].

Let us begin with a few historical remarks. In [1], Arkhangel’skii
showed that metrizability is an inverse invariant under open-and-closed
finite-to-one mappings. In [7], Proizvolov proved that an inverse image
of a metric space under a perfect 0-dimensional mapping is metrizable
if it is locally connected. :

Engelking and Lelek gave in [5] an example of a compact non-
metrizable space X and of an open mapping f: X —» Y onto the Cantor
set Y with inverse images of points homeomorphic to the space {0, 1, 4, ...}.
From that example it follows that, in the Proizvolov theorem, the assump-
tion of local connectedness of X cannot be omitted, even if the mapping
is open and inverse images of points are countable.

Velicko in [8] found an example of a non-metrizable, compact,
locally connected space X and of an open mapping f: X —» I of X onto
the unit interval I = [0, 1], with inverse images of points homeomorphic
to I. This example shows that in Proizvolov’s theorem the condition
that f is 0-dimensional is essential even if f is open.

Both these examples show that in Arkhangel’skii’s theorem the
assumption that f is finite-to-one is important.

Now, we are going to prove that, by adding some other conditions
in the Proizvolov theorem, we may assume that Y (instead of X) is locally
connected.

First, we will give some definitions. We say that a mappingf: X -» Y
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of a topological space X onto a topological space Y is confluent if for
every connected closed subset C of Y, and any points xzef~'(C) and ye O,
the set f~'(C) is connected between {z} and f~*(y), i. e., if every open-and-
closed neighbourhood of # in f~'(C) meets f~!(y). This notion was intro-
duced in [6]. We say that a mapping f: X —» Y is locally confluent if every
point y Y has a neighbourhood V, in ¥ such that f|f~!(V,) is confluent.
It is rather obvious that every open-and-closed mapping is confluent.

In [9], Zarelua defined the class of separative mappings. A mapping
f: X —» Y is called separative if for every point xe¢X and its neighbourhood
U in X there exists a neighbourhood V of f(x) in Y such that the set
f~1(V) is not connected between {x} and f~!(V)\U, i.e., that there is
an open-and-closed neighbourhood of # in f~'(V) which is contained
in U.

One can easily verify that a perfect mapping is separative if and
only if it is 0-dimensional.

Now we formulate our theorem.

THEOREM 1. Let f: X —» Y be a separative locally confluent mapping
of X onto a locally connected metrizable space Y. If for every y in a dense
subset A < Y the space f~'(y) is compact and metric, then X is metrizable.

Proof. Zarelua noticed in [9] that if f: X —» Y is separative and Y
is regular, then X is also regular. We will define a o-locally finite base in X.

Let B be an open covering of Y such that f|f~'(V) is confluent for
every Ve®B. Since Y is locally connected, there exists, for every
n=1,2,..., an open covering &, = {Gn,a}sssn consisting of connected
sets such that

(i) 0(@,,s) <1/n for every seS,,

(i) ®,, is a refinement of B.

Now, for every n =1,2,... and se8,, we can find a V, ,¢B such
that- G, ;= V,,; let us put F¥,, =G, ,nV,, By the definition of B,
the restriction f|f~'(F, ,) is confluent.

Let &, s be the family of all non-empty open-and-closed subsets of
fYF,,)- As in [5], Theorem 1, we shall prove that §, , < N,.

Let us take a y,e AN@G, ,. The set f~'(y,) is compact and metrizable,
so the family of all its open-and-closed subsets is countable. Since f|f~'(F, ,)
is confluent, every non-empty element of {, , intersects f~!(y,). Let B,
and B, belong to §,, and satisfy B,nf'(y,) = B,Nf'(y,). Then B
= B,\B, is open-and-closed in f~!(F,,) and Bnf'(y,) =0, which
implies B =0 and B; = B,. This shows that fgn,s <Np. Let &y,
= {Qn,s,m}z=l' .

For » =1,2,..., take an open locally finite refinement %8,
= {W,,iher, of ©, and for every ¢eT, choose an s(t)eS8, such that W, ,
< Gn,s(t) < Fn,s(t)'
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The family -
Bom = {f_l(Wn,t)nQn,s(t).m}teTn

is locally finite in X and consists of open sets.

If suffices to prove that 8 = | B, ,, is a base of X. Since f is sepa-

T n,m=1

rative, for any point < X and its neighbourhood U there exist a neigh-
bourhood V of f(x) in ¥ and an open-and-closed in f~*(V) set P such that
zeP < U. Since Y is regular, we may choose a neighbourhood V, of f(x)
satisfying f(z)eV, < Vo, V. By virtue of (i), there exists an =, such
that St(f(2),6,,) = V,. For any W, , <%, containing f(z), we have
f(=) eVVno,to < Ung,s(tg) < V, and Gno,s(to) c F ng,8(tg) < Gno,s(to) cVec V.

Hence f~'(Fpys1) = (V) and ze PN~ (F, o). Since the last
set is open-and-closed in f"l(Fno,,,(,o)), there exists an m, such that

Qno,s(to),mo = Pnf_l (Fno,s(to)) .

We have then xef (W, ;)0 Qnystym <P < U and fH(W, ,)N
N Qny, s(ty),mg € Brg,my- This shows that B is a base in X. The proof is
completed.

Remarks made after Theorem 1 in [5] show that none of the assump-
tions in Theorem 1 can be omitted.

From Theorem 1 it follows

COROLLARY 1.1. If there exists an open, perfect and 0-dimensional
mapping f: X - Y of a space X onto a locally connected metrizable space Y,
such that f~'(y) is metrizable for every y Y, then X is metrizable.

Since every countable compact space is metrizable and 0-dimensional,
we have

COROLLARY 1.2. If there exists an open, perfect and countable-to-one
mapping f: X —» Y of a space X onto a locally comnected metrizable space
Y, then X is metrizable.

Remark. One should compare Corollary 1.2 with the theorem of
Arkhangel’skii mentioned above. The example of Engelking and Lelek
from [5] shows that the assumption of local connectedness of Y is essen-
tial.

The next two theorems show that the mapping f of Theorem 1 is
necessarily open, and is closed if 4 = Y.

THEOREM 2. Let f: X - Y be a separative, locally confluent mapping
of X onto a locally connected regular space Y. If f~(y,) 48 compact for some
YoeX, then f is closed at the point y,.

Proof. Let f~'(y,) =« U c X, where U is open. We have to show
that there exists an open set @ =« Y such that f~'(y,) = f (@) < U.
Since f is separative, we may choose, for every xef '(y,), an open set
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V., Y and a Q, = f~!(V,) such that y,eV,, 2¢Q, = U and @, is open-
and-closed in f~(V,).

Let us choose a finite number of points x,, x,, ..., #,ef ' (y,) such
that f~!(y,) < Qzlqu qu and let W be a nelghbourhood of the
point y, in Y such that f | f‘l(W is confluent. By the regularity of Y
there exists an open and connected set V < Y satisfying y,eV < ¥

cﬂV NW, whence f~(y,) <« f (V) < f~ (V)forz—-12 ..y n. The

set P = @, nf (V) is open-and-closed in f~'(V) for 1=12,...,n,
and f~!(y,) < U P,. It follows then that P = f~*(V)\ UP is open-and-

closed in f~ (V) and that Pnf~'(y,) = 0. Since flf‘l( ) is confluent,
we have P = 0 and

70 < 7 <17 = Ui Uy T,

which completes the proof.

THEOREM 3. Any separative, locally confluent mapping f: X —» Y of
X onto a locally connected, reqular space Y is open.

Proof. Let B be an open covering of Y such that f|f~!(V) is confluent
for every Ve B. Take an open base B = {B,},.s of Y consisting of connected
sets and such that for every s eS8 there exists a Ve DB satisfying B, « B,c V.
For every seS, let W, = {WB ther, D€ the family of all non-empty
open-and-closed subsets of f~!(B,) “and let U, = {U8 thter,y Where U, ,

= W, ,Nf(B,). Since f is separative, it is easy to see that U = Uy, is
8¢S

a base of X. And since f|f~*(B,) is confluent and B, is connected for every
se8, we infer that f(W,,) = B, and f(U,,) = f(W, )N B; = B,. Then,
for every set U belonging to the base U of X, the image f(U) is open,
l.e.,, f is open.

Theorems 2 and 3 show that Theorem 1 is “almost equivalent” to
Corollary 1.1. More precisely, if in the formulation of Theorem 1 we assume
that A = Y, then Theorem 1 coincides with Corollary 1.1.

Engelking and Lelek proved the following theorem ([5], Theorem 1):

A. Let f: X - Y be a separative, locally confluent mapping of X onto
a locally connected, reqular space Y. If weight w(Y) =N, and for every y in a
dense subset A — Y the inverse image f~'(y) is compact and w(f‘l(y))
< w(Y), then w(X)<w(Y).

Here the situation is similar: if in this theorem we assume that 4 =Y,
then it is equivalent to the following particular case ([5], Corollary 1.2):

B. Let f: X—» Y be an open, perfect and 0-dimensional mapping of
X onto a regular locally connected space Y. If w(X)>=N, and w(f~*(y))
S w(Y) for every yeY, then w(X) < w(Y).
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We shall show that in B the space Y may be assumed to fulfill a con-
dition somewhat weaker than local connectedness. Let us begin with
the definition.

Definition. We call a topological space X weakly locally connected
(w. L. ¢c.) if it admits a grid ¢ of power not greater than w(X), consisting
of connected sets.

By a grid in X we mean a family R of subsets of X such that for
every xe¢X and its neighbourhood U there exists Ne3 with ve N < U.

Remarks. 1. X is w. 1. ¢. if and only if every open set in X has at
most w(X) components.

2. If X is locally connected, then X is w.1. c.

3. If w(X)> X, then X is w. L c., for example “the double segment
of Alexandroff” (see [4], Example 3.1.2).

4. The space X = R\{1/n:n =1,2,....}, where R denotes the
real line, is w. l. c., although w(X) < X and X is not locally connected.

THEOREM 4. Lel f: X - Y be an open, perfect and 0-dimensional
mapping of X onto a weakly locally connected space Y. If w(Y) >N, and
w(f~(y)) < w(X) for every yeX, then w(X) < w(Y).

Proof. A lemma proved by Arkhangel’skili ([3], Lemma 4) shows
that it is enough to prove that X admits a grid of power not greater
than w(Y).

Let ! = {N,},.s be a grid in Y consisting of connected sets such
that § < w(Y). For every se 8 let €, = {C, };.r, be the family of all non-
empty open-and-closed sets in f~'(N,). As in Theorem 1, we prove that
T, < w(Y) for every seS and that € = | JG, is a grid in X. The theorem

— 8€e8
follows from the obvious inequality € < w(Y).

COROLLARY 4.1. Let f: X —» Y be an open, perfect and countable-to-one
mapping of X onto a weakly locally connected space Y. Then w(X) < w(Y),
if w(XY)=R,.

Remarks. 1. From [5] and well-known examples of open finite-
to-one mappings of countable, non-metrizable T),;,-spaces onto countable
metrizable spaces it follows that none of the assumptions in Theorem
4 can be omitted. One should compare Corollary 1.4 with the theorem
of Arkhangel’skil proved in [3], which says that infinite weight of a topo-
logical space is an inverse invariant under open-and-closed, finite-to-one
mappings. The example from [5] shows that the assumption that Y is
w. L. c. is essential.

2. Not every w. 1. ¢. metrizable space has a o-discrete grid consisting

of connected sets (for example, the union @ C, of continuum copies of the
' reR

Cantor set), but obviously every w.l c. separable metric space has.
From [2] (Theorem 5.3, p. 167, and Theorem 5.2, p. 165) we infer that
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if f: X > Y is an open, perfect and 0-dimensional mapping of X onto
a metric space Y which admits a o-discrete grid consisting of connected
gets, and if f~!(y) is metrizable for every y Y, then X is metrizable. Com-
bining the example from [5] with the above example of w. 1. ¢. metric
space without any o-discrete grid consisting of connected sets, we can
see that if we assume only that Y is metric and w. 1. c., the theorem becomes
false. Herice the counterpart of Theorem 4 for metrizability does not
hold.
3. In a similar way, we infer that Theorems 2 and 3 become false

if we assume only that Y is w. 1. ¢. and regular.

- The author is grateful to Prof. R. Engelking for his help in the pre-
paration of this paper.

REFERENCES

[11 A. B. ApxaHreabckuit, Teopema o mempusyemocmu npoobpasa mempuueckozo
npocmpancmea npu OMEDLINO-3AMKHYMOM KOHEYHO-KPAMHOM 0mobpadrcenuu, npu-
mep u Hepewennvle 3adauu, Jormagn Axagemnu Hayx CCCP 170 (1966), p. 754-762.

[2] — Omob6pascenus u npocmpancmsea, Ycnexu Maremarnueckux Hayk 21 (1966),
BHIOYCK 4, p. 133-184.
(8] — IHpusnar cywecmeosarus GUKOMRAKMHO20 34eMEHMA 8 HENDEPLIGHOM Da3bueruu.

Teopema 06 ureapuarmHocmu 6eca NPpuU OMEDHIMO-3AMKKYMOM KOHEYHO-KDGAMHOM
omobpascenuu, Jornagu Axamemun Hayx CCCP 166 (1966), p. 1263-1266.

[4] R. Engelking, Outline of general topology, Amsterdam 1968.

[6] — and A. Lelek, Metrizability and weight of inverses under confluent mapping,
Colloquium Mathematicum 21 (1970), p. 239-246.

[6] A. Lelek, On confluent mappings, ibidem 15 (1966), p. 223-233.

[7] B. B. IIpousaBonoB, O pasbusalowyuzr 0moGpaAHNCEHUAT JOKAALHO CEAIHBIT RPOC-
mpancmes, Joraagu Axamemuu Hayk CCCP 159 (1964), p. 516-518.

[8] H. B. Beauuko, IIpumep omrpuimozo Komnakmunoz2o MOHOMOHHOZ0 HENPEPbIEHO20
omo6paowenus Hemempuayemozo 6uromnakma na xomnaxm, ibidem 177 (1967),
p. 995-996. '

[9] A. 3apenya, Pasencmeo paameprocmeii u Gukomnaxmusie pacuupenus, ibidem
144 (1962), p. 713-716.

WARSAW UNIVERSITY, DEPARTMENT OF MATHEMATICS AND MECHANICS

Regu par la Rédaction le 7. 12. 1970



