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VON NEUMANN ALGEBRAS
GENERATED BY REPRESENTATIONS OF NILPOTENT GROUPS

BY

V. YA. GOLODETS (KHARKOV) axp E. PLONKA (WROCLAW)

In this paper we prove the following

THEOREM. Let {U,},.q be the von Neumann algebra generated by oper-
alors of a unitary representation g — U, of a countable nilpotent group G
in a separable Hilbert space. If {U,} .. has a finite, faithful, normal trace,
then it i8 hyperfinite.

This theorem was announced in [4] but no complete proof has been
published. Here we present such a proof which makes use of the theory
of Dye [2], [3]. The theorem is also a consequence of a general theory of
A. Connes published in Annals of Mathematics 104 (1976), p. 73-115.
The proof we offer seems to be much simpler and more direct than the
one using Connes’ theory.

We are grateful to Professor C. C. Moore for his kind interest in our
result and for pointing out several minor gaps in our earlier draft of the
paper.

Professor M. Takesaki called our attention to the fact that the assump-
tion that {U,}"’ is finite is redundant, since under the assumption that
{U,}" is infinite the proof of the theorem, as announced in [5], has been
completed in [1].

Let %A be a von Neumann algebra of linear bounded operators in
a separable Hilbert space and let tr be a finite, faithful, normal trace
on U. The equality (a, b) = trb*a defines an inner product in %. The
completion H(A) of A with respect to the trace norm |a| = (a, a)'®
is a Hilbert space. The mapping a — 1,, where l,# = ax, is an isomorphism
of %A into the algebra B(H (A)) of all linear bounded operators in H ().
We denote by Eg the conditional expectation of % with respect to a von
Neumann subalgebra B of U (cf. [6]). Linearity and the following prop-
erties of Eg will be used:

Eg(a*) = (Eg(a))®, Eg(biab,) = b,Eg(a)by, tra = trEg(a)
for a e, b, b, €B.
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An algebra U is called hyperfinite if for given a; e W, 1 << < k, and
£ > 0 there is a subalgebra M of type I of U which contains the center
3(A) of A and elements n; € N such that

la;—mll <e for 1<i<k.

Let aut 3 (A) be the group of all trace and *-preserving antomorphisms
of 3(A). For a, g € aut 3(A) we denote by F(a, 8) the greatest projection P
in 3 (%) such that Q* = @* for all projections @ < P. In the case F(a,1) =0
we say that a is freely acting. Let 8 be a subgroup of aut3(%). We say
that an automorphism a belongs to [8] if

LUBF(a,s) = 1.
seS

The following (i)-(iv) give a description of [8] which is due to Dye
[2], 3]

(i) @ € [8] if and only if there is a partition {P(s, a)},.g of 1in 3(%[)
= 3 (i.e. P(8, a) are mutually orthogonal projections and ZP(s a) =1)
such that P(s, a) < F(s, a) for 8 € § and

= Z(P‘(s, a)P)* for all projections P e 3.
8

(ii) If 8 is an Abelian subgroup of aut 3, then there exists a partition
{D,}3, of 1L in 3 such that D} = D, for all n >0, 88 and
(a) [8] is a direct product of groups [8]p ,m» =0,1,2,..., where

[8]p, ={ae[8]:1-D, < F(a, 1)};

(b) [81p, =[Z,]foralln =1,2,3,..., where Z, is the cyclic group
of order n of freely acting automorphlsms of the a.lgebra. 3D,;

(c) [81p, = [23], where Z}o is the restricted direct product of N,
copies of Z, of freely acting automorphisms of 3D,.

(iii) If 8 is a finite group of freely acting automorphisms of 3, then
there is a projection P in 3 such that {P°},.; is a partition of 1.

(iv) If S is a finite group of freely acting automorphisms of 3, then
there exists a cyclic group Z, of freely acting automorphisms of 3 such
that [8] = [Z,].

We have also

(v) Let s be a freely actmg automorphlsm of 3(A). If for an element
a €A the equality a(2®*—2) = 0 holds for all ze3(‘ll), then a = 0.

In fact, since the equalities P(P°—P) =0 and (P(P —-P‘_l))‘ =0
hold for P < ¢(a) (¢(a) is the central support of a), we have P = P°, Hence
¢(a) < F(s,1) = 0 and, consequently, a = 0.



VON NEUMANN ALGEBRAS 283

From now on, all von Neumann algebras which will be dealt with
have finite, faithful, normal trace.

LeEMMA 1. Let B = (%, {U,},.s}" be the von Neumann algebra gener-
ated by a von Neumann algebra N and a family {U,},s of unitaries, where 8
is a subgroup of aut3NA), U, =1, U; AU, =A, U,2U, =2*, U,U,U,
=a(s,t) €N for all z € J(N), 8, t € 8. Let [8] = [K], where K ¢2 a group
of freely acting automorphisms of 3(U). Then there is a family of unitaries
{Uitrex tn B such that each b € B has a representation of the form

b = Ea,‘U,,,

keK

where a, € A and the summation being taken in the trace norm ||-||. Further,
we have 3(A)'NB =A.
Proof. Let a € [8]. By (i),

P* = Y'(P(s, a) P,
scS

where P € 3(N), {P(s, a)},g i8 & partition of 1. Let us put

(1) U, = ) P(s,a)U,.
saS
We have '
UU, = Y P(s,a) U,UP(t, 0) = D) U,P(s, a)*P(t, o) Ty
8,88 8,t

= Y U,(P(s, a)P(t, a))*T} = Y UP(s, 00T, = ZP(s, a) =1,
8,t ' 8 8

since P(s, a) < F(s, a). 'Siﬁiilarly, if a €U, then
UsaU, = Y U,P(s, a)aP(t,a) Uy = D' U,P(s, a)P(t, a)aT,

8,ieS 8,

= )/ UP(s, a)aT,.

Consequently, U*UAU, =A and, putting a =1, we have U, U: =
ULU, =1, i.e. the operator U is unitary. Moreover, UsPU, = P* for all
projections P € J(N).

For t € 8 and k € K let {P,(s, k)},o5 be a family of projections defined
by the following condition: ' ‘

{Py(8, k)},es i8 & maximal family of mutually orthogonal projections
such that P(t, k) = F(t, k) and P,(s, k) < F'(8, k) for s 8.

Since k € [§], it is clear that

D Py(s, k) =1.

gseS
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Now for the partition {P,(8, k)},.s let U,(t) be defined by (1). Since
t e [K], we have

(2) Y P(t, k) U,(1) = ) Py(t, k)Py(s, k) U, = D F(t, k) U, = T,
keK keK keK
8€8
and, consequently, for ¢,,%, € 8 and k¥ € K we have
Us(t) Up(t)* = D Py (8, k) U,UP, (¢, k)

8,leS

= )P, (s, k)P, (t, k)" U, U;
8,

= Y P, (8, kTP, (t, K)* Uy-rals, t)at, 1)
8,8

= Y D Py (s, )P, (1, B)Pu-a(st7, ) Tya(s, t™)alt, ).
leK s,teS

Since
P, (s, k)Ptz(ty k)Py-1(st™', 1) < F(s, k)P (t, k) F(st™*, 1)

< F(st™ ), 1) F(st™ L) < F(L,1)

and F(l, 1) = 0 for each ! from K such that ! + 1, we see that U, (t,) U, (t,)*
is an 9.
Let us put U, = U,(1). Then we obtain a family {U,},.x of unitaries
in B. Let D be the set of finite sums of the form }' a,U,, where a, € .
KX

We show that D is an involutive algebra. Indeed, we have

UaU U, = ) U;Pi(s, W) Py(t, k) UPy(w, ) T,

8,8, weS

= X'Py(s, K)*Py(t, kY Py(0, 1) *T2T,T,

8,t,w

= Y Py(s, K)°Py(t, k) Py (w0, 1) T, -140'(s, 1, 1)

8,¢,w

= 3 Pyls, KY'Py (8, )Py (w0, ) P,-1y(s7L, m) Upa' (s, £, 1),

8,8, wesS
meK

where a’(8,t,1) are unitaries from . Let @ be a projection from 3 (%)
such that

Q < Py(8, KI* Py (2, k)* Py (w0, I P, 1,(s~ 0, m).
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Then we have Q* ¢! = @' @' = @~ @' = @™, which
shows that Q™ = @ and, therefore, @ < F(m, 1). Since m (m # 1) is
freely acting, we see that U;U, U, is in % and, consequently, D is an involu-
tive subalgebra of B. Moreover, it follows from (2) that U, € D for all
¢ € 8§ and, therefore, D' = B.

Our justification for above calculating is that all series, which ap-
peared, converge in the operator norm.

Now, let us suppose that bz = 2b for some b € B and z € 3 (). Applying
conditional expectation Ey to the identity

bULU, ULz —2™ *bULU, UL, =0,
we get
(3) Eq(bULU,Un) (™ % —2) =0,

provided bz =2b,beB,ze 3(A), k, |, me K.
If we put b = (aja,) and U, = 1, then we obtain

0 = (57a,) Eq(U; U,) = trEy(U7a}a,U,) = (0, Uy, 0, U))

in view of (v). Thus {¥ U, }iex i8 & mutually orthogonal family of subspaces
of H(®B). Therefore, the |-|-closures H(A) U, of AU, form a family of
mutually orthogonal closed subspaces of H (B). Of course, D is ||-||-dense
in H (B), since D"’ = B and 4 — b (strong) implies ||b —d|| — 0. Therefore,
H(B) is the orthogonal sum of subspaces {H (B) U,}iex-

Consider the mapping u;: B — H(A) U, defined by

pr(d) = Eq(bU) U;, where keK.
If we put b = a; and U, = 1 into (3), then we get
Eg(U,Un) =0, _a
because of (v). Thus

b (@ U;) = Eu(al-UlU:n) Un = ,m—la‘th

which shows that the restriction of u,, to the elements from D is the ortho-
gonal projection into H(%)U,,. Since the mapping u,, is ||-|-continuous
and D is ||-||-dense in H(B), u,,(b) is the projection of an element b € B
on the space H(YA)U,, and, consequently, there are elements a, is U,
namely a, = Eg(bU}), such that

b= Za,,U,,.
k

I we put U; = U,, =1 into (3), then, taking into account (v), we
get Eq(bU;) = 0 for all k€ K, k +# 1, provided bz = zb for all z € 3 ().
Consequently, b = Eg(d) which belongs to % and Lemma 1 follows.
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LemMa 2. Let B = U, {U},sl”’, where U, AU, =N, U,2U, =2,
8 < aut 3 (A) and suppose that the unitaries U, satisfy the conditions U, = 1
aond UyU,U, e for 8, t€ 8, z € 3(N). Let [8] = [K), where K is a finite
oyolic group of freely acting automorphisms of 3(U). Then, if WA 18 hyper-
Jinite, so is B.

Proof. By Lemma 1, every b € B has a representation of the form
D a,U;. Let
k

e>0 and bp=2a,""pUk, 0< p < n,
k

be given. In view of (iii), there exists a projection P in 3(¥) such that
{P"},ex i8 & partition of 1. Let g be a generator of the cyclic group K of
order m. It follows from Lemma 1 that Ug,U“, eN,i=0,1,...,m—1,
and, therefore, Uy € . Let us put

U =exp[ _;:1],

where A is self-adjoint such that U} = exp[id]. Of course, Ue¥U. We
have also UU, = U,U and, consequently, (U,U)" = UZ7U™ = 1. It fol-
lows from Lemma 1 that

by, = Dy, Vi,
k

where V, = (U, U)’, k =¢*', ¢ =0,1,...,m—1, and a, , €¥.

Since ¥ is hyperfinite, so is AP. Therefore, for ¢, > 0 and the elements
a; P € AP, where k, | € K and 0 < p < n, there is a subalgebra R, of type I
of AP, which contains the center of AP and elements =,,, in N,
such that '

llag,pP — M pll < & for k,le K, 0< p<n.

Let us put # = R,, V,,}".' The algebra R is of type I and 3(B) = N-
In fact, by Lemma 1, the center of B consists of elements 2z € 3(¥) such
that #* = 2 for all k € K. Since

2PeM, and 2z = Z(zP)",
%

we see that z is in RN. Now, for the elements

1—-1
N0V €N
k,leK

we have
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“bp - Z”i.—zfkaH = “ Zk'ak,ka— kzl:”}c,_z,lpvkn
k1 »
< D M@ ) T —n ol < Do~ pll < e,
k k,1

k1

which completes the proof of Lemma 2.

LemMA 3. Let B = {0, {U,}s)’, where U, AU, =AU, U,2U, = 2°,
ze€ 3(A), s€8, 8 being a countable Abelian subgroup of aut J(U). Let us
suppose that the unitaries U, satisfy U, =1 and UyU,U, e for s, te 8.
Then, if U i8 hyperfinite, 8o is B.

Proof. Let {D,}s., be the partition of 1 as in (ii). Since D% = D,
for all 8 € 8, all projections D, belong to the center of B. Consequently,
B is the direct product of the algebras BD,. Since the direct product
of hyperfinite algebras is, of course, hyperfinite, it is sufficient to show
that each BD, is hyperfinite. Clearly,

!W 8'Dﬂ, = {%Dn’ {UaDn}aeS}” = ‘QI'Dn? {Uan}nSl ”’
where 8, is a subgroup of aut3(BD,).

In the case #n > 0, the algebra B.D, is hyperfinite, since all hypotheses
of Lemma 2 are satisfied.
If » = 0, then it follows from (ii) that [§,] = [K], where

K = U Kny Ky =(2Z,)".
M=
By Lemma 1, the algebra BD, consists of elements of the form
? a, U, where a, e D, and U, is unitary in the algebra BD, for all
ke K. Let B,, = {UD,, {Up}ex, ) - Then

B < Buyr < Ulﬂs,,,)" = BD,.

o me1 '
Since K,, is finite, we can apply (iv) and then Lemma 2. Therefore,
B,, is hyperfinite for all m > 1, and so is BD,. Thus Lemma 3 follows.

Proof of the Theorem. Let G be a countable nilpotent group
of unitaries in a separable Hilbert space. Let

G=G,26G;>...06G,06G,,, =1
be the lower central series of G. We let
A - a» maximal Abelian subgroup of G if » <2,
G, otherwise.

Then the centralizer C(4) of A in G is a nilpotent group of class
less than or equal to » —1 and the factor group @G/C(A4) is Abelian.
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Consider a von Neumann algebra G”’. We have @’ = {C(4)"”, {U,},es)”,
where 8 is the group of all automorphisms 8 of A of the form a* = g~'ag
for some g € @G, and U, are chosen from @ in such a way that a®* = U;'aU,
for acA, 88 and U, =1. Since U;'C(4)'U, = C(A)’ and A"
< 3(C (4)”), 8 becomes an Abelian subgroup of automorphisms of the
center 3(C(4)”) of the algebra C(4)”. The theorem follows now from
Lemma 3 by induction on the class of nilpotency » of the group G.

Remark. Using the same arguments one can prove that the Theorem
holds for a countable group @, which contains an Abelian subgroup A
such that the centralizer C(A4) of A in @ is nilpotent and the quotient
@/0(A) is Abelian. For example, the group axz+b, where a and b are ra-
tionals, is so.
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