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1. Introduction. In the study of earcinogenesis (Neyman [3]) there
arises the problem of deriving the probabilities describing a stochastic
model of population growth. The probabilities cannot be deduced by
the well-known procedure, due to Bartlett [1], which consists in replacing
the system of differential equations by a partial differential equation,
because the equation cannot be solved by standard methods. Since the
problem is important, an effort has been made to find some other method.

There are two possible ways to handle cases where Bartlett’s method
of replacing the differential equation does not provide a solution. The
first is to look for approximate solutions of the partial differential equa-
tion for the generating function. The second, which is used in this paper,
is to look directly for exact formulae for the probabilities describing the
stochastic model. The method used in this paper is an extension of Bart-
lett’s method [1]. :

The second section of this paper considers two partial differential
equations, which arise in the examples considered in the last section.
The purpose is to deduce formulae for the coefficients of the expansions
of the functions satisfying the differential equations. 1t has been shown
that the partial infinite sums (see (7) and (51)) of the expansions of the
functions satisfying the partial differential equations are completely
determined by the first n+ 2 and n—+r-+ 2 coefficients. This fact simplifies
the computation of the coefficients that we are seeking. General expres-
sions are found for the partial sums of the expansions of functions satis-
fying the differential equations (theorem 1 and corollary 3) and relations
between them are established (theorem 2 and corollary 4).

In the last section the results obtained in the second section are
applied to solve problems concerned with one and two stage birth and
death processes with constant rates. We find the probability that at
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time ¢ there will be n live cells with m deaths and » mutations in the
time interval from 0 to ¢. The main result is a procedure that can be
used to evaluate approximately the joint distribution arising in Neyman’s
. stochastic model of carcinogenesis.

I wish to acknowledge my indebtedness to Professor Jerzy Neyman
for proposing this investigation to me and for his many valuable sugges-
tions during its progress.

2. The partial dlfferentlal equatmn. In this section the differential
equation

oG
(1) —[Aur—pu+y Eyolo- =0

ot
coupled with the boundary condition G(u, v, 0) = u will be considered.
The coefficients 4 and g are assumed to be constant. Our problem is to
find the formulae for the coefficients p,,,(t) of the expansion

(2) Glu, v, 1) = Z”‘ 2, Pan (D"
=0

of the funection G(u,v,t) satisfying equation (1).
The partial differential equation (1) cannot be solved by standard
methods, because they lead to a differential equation of the Riccati type.
If relation (2) is substituted into equation (1), then, by comparing
appropriate terms, we obtain the system

(8)  Pun(t) = AM—1)pp_1n(®)+ 7 (@) (M +1)Prs 1 uy (1) — WPy 0 (1)

of differential equations. The boundary condition G(u, v, 0) = u reduces
to p,,(0) =1 and p,,,(0) = 0 if (m,n) # (1, 0). The functions P, ()
are defined to be zero for m < 0 or » < 0. This assumption is made
throughout the paper. The differential equations (3) are of a recursive
character and can be solved successively. This procedure can be however
simplified. From theorem 1 below follows, as it will be shown, that if

the first n»+2 functions Pon(t)y P1a(t)y -ooy Puyin(t) are known, then
the functions p,.s,.(t), Puisn(?), ... can be easily computed.
Introducing the notation
(4) Go(Uy 1) = D Pu(t)u”
m=0
leads to the equation
0G,, 0G,_,
5 — (Au?— t
(5) o (1) ™

and to the boundary conditions G,(u,0) = u, G, (u,0) =0, G,(u, ()
=0,...
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THeoOREM 1. For every m, there ewists a system of n-+2 functions

(6) w0 @), v (1), -, i ()

depending only on f and y(t), such that the partial sums (4) of the function
G(u,v,1), that satisfies (1), can be presented in the form

A A\t
- wa”’(t)+~w£")(t)u+...+(—) yida ()"
B B B
(7) Gn(uy t) = E 2 n+41

e

Proof. If n = 0, then (5) reduces to

06 G
l 2 _
ot *

(8)

=0,

with the boundary condition Gy(u,0) = u. The solution of (8) can be
found by the well-known standard method. According to this method
first the differential equation

9 i du

9) 1 —(Au2—pBu)

is to be solved. Using the solution of (9), which is equal to
4

(10) = At kpe

where & is a constant, the function G (u, ¢) satisfying (8) and the boundary
condition Gy(u, 0) = u can be obtained. Namely we have

up

(11) ol Y = oxp (BT (1 — exp )’
or '
. <°>(t)+( ) P (t)u
A
(12) Go(u, ) = (g) ; ’

1- ga—exp{—ﬁt})u

where y{” (1) = 0 and 3" () = ¢ ”. Hence relation (7) holds for n — 0.
If » >0, we obtain by standard methods the recursive formulae

(13) (u, 1) = f y to)[ 25-aliy t°’] t,
U~ B(A+kpe—Bbo)—1
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for the solution of (5). Here &k has to be taken from relation (10). Eli-
minating &k leads to

(14) BA+Tpe Pyt = G(u, t—1t,).

It is also more convenient to write ¢, instead of ¢ and ¢, , instead
of t,. So we get the equation

tn
00 (s b

(15) Gr(u,yty) :'f?’(tn—l)[ ! la , 1)] dty_y.
0 % U~ o, by—ty —1)

Now we prove by induction the formula
(16)  Ga(u,t,)
b b
= [ y(tar) [ p(tu_s) fy (fo) Wi (2t by <oy o)ty Aty
0 0

where W, (u,t,,...,%,) is a sum of expressions of the form

17) 4 [ Go(u,t,) ]Bo[ Go(u, t,) ]51 [ Golu, ) ]en_l
" GO(“’ tn_to) Go(u, tn—tl) o Go(u, tn_tn—l) 7

where ¢; equal 0,1 or 2, while

n—1

Dler = n+1.

_ i=o
Also A4, does not depend on u. The particular terms of W, differ only in

the 4, and the (g4, &1y ...y €4_1)-
If » =1, then (15) reduces to

1
(18) G (u, 1) fy (o) [ , ")] dt,.
u~Go(u, 1 —tp)
Note that G(u,t) given by (11) has the following properties:
(19) Go[Go(uy 1), 6] = Go(u, t,+1,),
(20) 0G(u, 1) _ [Go(u’ t)]:ﬁt'
ou )
Using (20) and (19) leads to
21 (o) ﬁ‘o[ Golt, t ]dt.
(21) f?’ 0) (w0, 1, — 1) 0

Hence G, (u, tl)' is' of the -form (16)- with A4, = ¢ and ¢, = 2.



STOCHASTIC MODEL OF POPULATION GROWTH 277

Now it is to be shown that if formula (16) holds for %, then it holds
also for n+1, i.e., we have

Iy e | tn tl

(22) Gy (Ustuyr) = [ ¥(ta) [ ¥ nca) oo f 7 C0) Wogs (W tagry ooy Bo) ity o Al
0 0

0

where W, . (%, 1, 1, ..., %) is a sum of expressions of an analogous form
s (17), i. e., of the form

Go(Uy Ty ir) ]no[ Go(ty tyiy) ]ﬂl [ Go(uy tnyr)
')' G t ) R

(23) 4, [W__m_ ‘
o Gﬂ(ui tn-;—l_to 0(“7 tn-}-l_ 1 Go(ur tn+1_tn)

n

’

where 7; equal 0,1 or 2 and

Zﬂi i n—l—2.
i=0

Using (15) and (16) leads to

int1

0G, (u,t

. )
(J4) Gn }-l(u’ tn |—1) = f y(tn)l}-T dtn =
L U~Go(%, tp 1~ ty)
In+1
f )’( n [ f)’ n— 1) f)/ to ey to)dtﬂ...dtn_l] dt,
0 u~G(t, 1y 4 1=%n)

OWo(u,tyy ..oyt )
=f fy 1 fy to)[ {8 fny o) ] dty...dt,,.
y ou U~G(W, &y 1—ty)

The derivative of W, = W,(u,t,,...,t) Wwith respect to wu is
the sum of derivatives with respect to « of the particular terms (17).
Therefore, in order to prove relation (22), it is sufficient to prove the
following: by differentiating the particular terms (17) with respect to u
and substituting G,(u, t,,,—1,) instead of u terms having the form of
formula (23) are obtained. This follows from the relations

(25) 0 [ Golu, 1) ] ___i[ Go(u, ty11) ]2(1_64%)651
ou (u s t) u~Go(, 4 1—1y) 13 Go(u,tn+1_tn)
and
(26) i[ Go(u, ) ]2
ou | Go(uy t,— ) Ju~Gyu, bty —tn)

"y i[}G Go(ty by, 1) ][ Go(u, tn+1)t' ) ]2(1_ 6—ﬁtk)eﬁﬂn.

i o(%y by — 1) Go(u, 1 —
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Both the formulae can be obtained by elementary computations
using (20) and (19).
Note that

A
Go(u,t,) A= g(l"exp{*ﬂ(tn—tk)})u

(27) Go(“: tn_tk) B

e P,

1—% (1—exp{—pt})u

Hence (17) reduces to

(28) Anexp{—ﬁfsiti}x
i=0

[1 — %(1 —exp{—pB(t,—t,)}) u]sﬂ. . [1 o= %(1 —exp{—f(t,—1t,_1)}) u]

tn—1

X

[1 - % (1— eXP{—ﬂtn})u]Ml

where &; equal 0,1 or 2, while

n—1

Zei =n-+1,

=0

Whatever are the numbers (e, e,,..., s, ,) expression (28) is a ratio
of two polynomials of degree n-1 with respect to » with the denominator

i n+1
[1 — E(l —exp{— ﬁtn})u] .

Hence W, (u,t,,...,1) is also a ratio of two polynomials of degree
n+1 with the same denominator. In other words, formula (7) holds.

As it has been already mentioned, theorem 1 gives a way to evaluate
the probabilities p,,(t), p;.(t), ... Using the equation

1 - n-l—@ i
- e = ()
formula (7) can be presented in the form

A\ Y[ A\™ it j m+n—i\ @)
(30)  Gp(u,t) = (E) Z(E) (1—e ") ;( - ) (l_e:?t)i'“ )

m=0
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where j = min(m, n+1). Hence

AT am O (i p ()
(31) pm,n(t) = (ﬁ) (1 e ) - ( n )Eje—ﬁt)i ’

where j = min(m, n+1). Also, if the first n-+2 probabilities p,, (),
Pral(t)y ooy Puira(t) are known, the functions (" (?),..., %\, (f) can be
evaluated from (31).

In the particular case when y(f) is constant, two corollaries can be
obtained from theorem 1.

COROLLARY 1. If y(1) is constant, the partial sums G,(u,t) of the

expansion of the function G (u, v, t) that satisfies (1) can be presented in the
form

(32)  Gu(u,t)

(n) A n) A\ (n) nil
(y )n (l)n~1¢0 (ﬁt)_'_ E ¥i (ﬁt)u’++ E (pn-}-l(ﬂt)u
—\ s 7 o ntl s
i |- %(l—exp{—ﬁt})u]

where gl (t), ..., ¢ (t) are functions of t only.
Proof. If y(¢) is constant, then in view of the form of formulae (16)
and (28), formula (7) can be written in the form (32).

COROLLARY 2. If y(t) is constant, then the coefficients p,, (1) of the
expansion of the function G (u, v, t) that satisfies (1) can be presented in the
form

, i ] w NI n—i) o6
(33) pm,n(t) - ('E) ("E) (1 ) Z( n ) (1 _Qﬁt)lir

t=0

where j = min(m, n-+1).

Proof. Formula (33) is obtained from formula (32) in an analogous
way as formula (31) from (7).

A possible way to evaluate the functions ¢{"(¢), ..., ¢{"),(t) appearing
in the expressions (32) and (33) is to use an 1nteglal representation
of the form (16).

The other partial differential equation to consider is

G
(34) e — (A2 — pu+ 8(t) v+ 5 (t)w) —

=0
ot ou !

with the associated boundary condition G(u,v,w,0) = u. The coeffi-
cients 2 and p are assumed to be constant.
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As in the previous case, the formulae for the coefficients of the
expansion

o0
2 pm'nr '”/m'vnwr

r=0

e

(35) Glu, v, 0,0) = 3

m=0mn

i
)

of the function G(u,v,w,?) satisfying equation (34) are to be found.
In the same way as before, relation (34) can be split into a system
of recurrent partial differential equations

0G, r 0Gm B 0G,_y, Gy,
(36) g \Aut—fu) = o) —— Tt ——,
where
(37) G (W, 1) pr

with the boundary conditions Goo(th, 0) = u, Gy, (u,0) =0 for n2}r
> 0, and

Lo, e o

(38) G(u,v,w,t) = ZZG’”W t)o"w'.

n=0r=0

THEOREM 2. For every n and r there is a system of (n:w) sequences

(39) P, (@) oy ¥R (8),

where the y\)(t) equal 6(t) or n(t), 1 <s < (nj"r), such that the partial
sum Gnr(u,t) of the expansion of the function G(u,v,w,t) that satisfies
(34) s equal to the sum of solutions HE.(u,t) of the (nj'r) recurrent
systems of the partial differential equations ’

aH(S) aH(S)
— (Au?—pu) B =0,

ot

aH) oH oH
40 — (Jur— "
(40) 5 (A—fu) ™ 1 g

OHitr _ qur— puy SEke Hifir _ OHR

ot T ou
coupled with the boundary conditions
(41)  HP(w,0) =u, HP(u,0)=HP(u,0)=... =HY, (u,0) =0

and corresponding to the particular sequences (39).
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Proof. The theorem is true if one of the indices n or r is equal to
zero, because then equation (36) is of the form of equation (5). Suppose
now that the theorem holds for (n—1,r) and (n,r—1). By applying
the standard method the solution of (36) is found to be

0Gy (U, to)]
ou u~p(i+kpe—Plo)—1

t
e S | o+

dity,

4
Gy ,_1 (%, &
LS L

ou ]u~ﬂ(l+kﬁc‘ﬂtﬂ)_1
where & has to be taken from relation (10). Using (14) leads to

aGn—l,r (uy 1) ]
ou uNGo(u,t—to)

‘ t
(43) () = [ a(to)[ ity +

0

4
0G, , ((u,t
+fn(to)[ 'al( ’ °)] dty.
0 [ u~Gy(u,t—1g)

By assumption there is, for the function @, _;,(%,?), a system of
(n—l—r—l

- ) sequences

(44) PO, ¥O), o es P81 (8),
where the »® equal 8(t) or #(t), 1

(")
(45) Guorpluy ) = D HY 1 (u, 1),

8=1

A

8§ < (n:_r), such that we have

where H{). ,(u,t) are the solutions of the recurrent systems of the
partial differential equations

oH® OH®
g e —pu) =0,
OH) OH OH®
46 ~ — (Aut— =
(46) o — =) = = (1)
OH(SL q oH® OH®
Al ot nAr-l () ) —ntr-2
ot (A= pu) ou Vuzra () ou '
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associated with the boundary conditions H{(u,0) =u, HP(u,0)
= H® (u, 0) = Hﬂr 1(#,0) = 0 and corresponding to the parti-
cular sequences (44). Using (45), the first term on the right side of for-
mula (43) may be written in the form

t
oG, (.t
(47) fa(to)[—*‘(“ °)] dt,
. au u~GO('u,,t—t0)
(")

OH,,, o1, ) ]
B i A dt,.
— Z fé(to)[ [)‘u u~Go(u, t—1tg) ’
8=1 0

n+r—1

r

14
aHD .
(48) f 5(t) [_L#
0

For every 1 <s < ( ) the integral

dt
ou ]MNGO(u,t—tO) 0

represents the solution of the differential equation

dH®) JH®) OH®
49 n+4r L 2 n4r - n+r—1
(49) Py (Au®— Bu) P o(1) “ou

coupled with the boundary condition H{),(u, 0) = 0. Thus integral (47)
is the sum of the solutions of the (1&4—; ) recurrent systems of differen-

tial equations consisting of equations (46) and (49). Similarly, it can be
shown that also the second term on the right side of formula (43) is the

sum of solutions of ( T_T 1) analogous recurrent systems of partial differen-

tial equations. Hence it follows that G, r(u, 1) is the sum of solutions of
n+r—1 n+r—1\ [(n+r
o () ()= 07)

recurrent systems of partial differential equations. This completes the
proof of theorem 2.
From theorem 2 and corollary 1 two corollaries can be easily obtained.

COROLLARY 3. The partial sums G (u,t) of the expansion of the func-
tion G(u,v,w,t) that satisfies equation (34) can be presented in the form

(51) Gpr(u,t)

5’”’(t)+(i)ﬁi"”’(t)qu...Jr(—
_ (i)nw 1 ; - B
p

3 - n4r41
[1 — E(l —exp{—fi}) u]

where the functions E7(1), ..., E0). 1 (t) depend on (1), y(t) and .

n+r41
n,r n4r41
) §n+r)+l( )’M/

9
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Proof. This is a consequence of the fact that H),(u,t), where
1 £8 <% (";H), are solutions of systems of partial differential equations

analogous to the sy%tem consisting of (46) and (49) corresponding to differ-
ent sequences y{” (), ..., y&),.(t) and can be presented either in the form

byt lp+r—1

(52) ng,szyr n+r f%(:lr ntr— 1 7n+r 1 n+r—2)-'-
0
t

f n+r (u, bugry voey to)dtu°--dtn+r—19
0

where W, (U, ty rytoir_gy.--5%) 18 @ sum of expressions of the
form

(53)
Agﬁrr[ Go(y 1) ]ED[ Go( tyyr) ]Elu‘[ Go(u, tn+r_)______:|ﬁn+""l
Go(Uytyyr—1o) Go(tyty r—1) Go(thy bpir—Tnir1)
where the ¢ equal 0,1 or 2, while
n4r—1
Z g =mn+r41
i=0

and A{), does not depend on u, or in the form
(54)  HE(u,1)
(n,r,s) A (n,r,8) l e (n,r,9) n4r+41
(A)W_I O e R e e ()
Y

A n++r+’
[1— E(l—eXP{—ﬂt})u]

where the functions &""(t), ..., &%, (t) depend on 4(t), n(¢) and }B.
The proof of (52) and (54) proceeds in an analogous manner as the
one of formulae (22) and (7). Hence (51) follows, because the sum of
expressions (Hb4) has the form of (51).

Using (51) and (29) we obtain for p,,,, (f) the formula

(n,r)

B 2 \mAntr—1 - ; m—+n—+r+i 3 ()
(55) pm,n,,(t)—(vg) (1—ef) 2( g )”—“(1_6—&)“

where j = min(m, n+r-+1). Note that in this case the n-+r- 2 functions
ECN(E)y oeny E9) 1 (t) appear in the formula for pg,,,(f). Also, if
Ponr(l)s pl,n,r() ey Pryrirmr(t) are known, the functions {()n,r)(t)’ .
g0 1 (t) can be evaluated from (55).

1=0

"2
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COoROLLARY 4. If d(t) and n(t) are constant, then the partial sums
G (w0, t) of the expansion of the function G(w,v,w,t) that satisfies equa-
tion (34) can be expressed by the partial sums G, ,.(u, 1),

(56) Gn,r(“; ) = (%;{—7’) 6n7]an+r('M; t),

of the ewpansion of the function G(u,v,t) that satisfies equation (1) with
y(t) = 1.
Proof. In view of the assumption of corollary 4 formula (52) red-
uces to
bntrlntr—1 ty

(57) B,y by = o™ [ [ . fW,H,. busryeneylo)dlgen.dty vy
0 0

Finally, using (16) we get
Hﬂr(u, tn+r) = 5nann+r(u’ tn+r)

and formula (56) follows from theorem 2.
From (56) interesting formulae

’I?/—I—’f 5 n 7 r A n4r—1
o et = (GGG

l n47r41 '
w60+ (St (2 g e

X

n+r+1
i [ eXP{—ﬁt})u]

=B

and

(59)  Pmnsr(l)

B ntr S\” 9 T A\mntr—1 —ﬁt " m+ntr—i (’Hr)(ﬁt)
LN GIGN™ e S

can be obtained, where j = min(m, n+r-1).
1t is of interest that both coefficients (33) and (59) can be expressed
by the same functions ¢{(2),..., ¢, (), where & =0,1,2, ...

3. Applications. The main result of the previous section is formula
(31) for the coefficients of the expansion of the function satisfying equa-
tion (1). If differential equations (1) and (34) represent equations for the
generating functions, then (31) and (55) provide the formulae for the
corresponding probabilities describing the stochastic models. Three
examples where these formulae are applicable are given in this section.
The first two deal with the birth and death processes with constant rates.
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The last application is to the joint distribution arising in the stochastic
model of carcinogenesis of Neyman [3].

Example 1. If v =1, y(t) = p and f = A+ p are substituded in
differential equation (1), then

(60)  G(u,?) = pB()+[1—2AB()][1—pB(®)] EMB e,

where
1—exp{t(A—pu)}
p—Aexp {t(A—p)}

This is the generating function of a pure birth and death process
with constant rates A and w. If, in addition to the number of live cells,
say x(t), the number of cells, say y(t), dying before time ¢, is taken into
account, the differential equation for the generating function G(w, v, 1) is

oG 0G
(62) =l — (A gt o] 5 = 0,
t ou

(61) B(t) =

and let G(u,v,0) = u.
Equation (62) is obtained in the usual way by letting

(63) pm,n(t) = P{{I}(t) =m, 'y(t) = %}

Now it is a simple matter to show that

(64) p;n,n(t) = }'(Qnﬁ‘l)pm—l,n(t)_kM(m+1)pm+l,'n—1 (t)_(ﬂ"l_ M)'mpm,fn(t)-
Hence equation (62) for the generating function

o0

(65) G(u,0,1) men

m=0n=

—

o

follows easily.
Under the assumption that A and u are constant the solution

Wy (U — Ug) — g (U — Uy) €XP{ —A(Uy— uy) 1}
Uty — (1 — ) XD { — A (Ug— 1)1}

(66) G(u,v,1) =

f (62) is easily obtained by the well-known methods, where

3t et [(A— )P+ 43 (1 — o)
Uy = - 22 ’

At p—[(— @)+ 4hu 1 —o) "

24

(67)
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However, the solution is complicated, so that it is tedious to find
the coefficients of the expansion of the function G(u,v,t). Hence formula
(33) is proposed to evaluate the probabilities Pm,u(t).

Example 2. A birth and death process with mutation will be consi-
dered next. Let x(t) and y(t) be defined as previously, and let z(t) be the
number of mutations in the time interval from 0 to . If

(68) pm,n,r(t) = P{.D(t) = m, y(t) =n, z(t) - T}’
then

(69)  Pruws() = Am—1)py_y .0 (1) +um A1) Py (8)+

+”("l+1)pfn+l,n,r~l(t)—(2+H+”)mﬁm,n,r(t),
and
(70) aﬁ —[Au?— (A4 +v)‘u+ v+ vw] G_G == i}
ot “ # w

Suppose that G(u, v, w, 0) = u. Here Ay p, v are the rates of birth,
death and mutation, respectively, and G (u, v, w, 1) is the corresponding
generating function.

The formulae for Pmanr(t) can be obtained from (59).

Example 3. The stochastic model of carcinogenesis of Neyman
is a two-stage birth and death process. It is convenient to call the two
different kinds of cells considered in the model grey cells and black cells.
The grey cells multiply and die and, moreover, they are exposed to a risk
of mutation. The result of the mutation is a black cell. Let 4 be the rate
of birth, x of death and » of mutation. The black cells can only multiply
and die. For the black cells let L be the rate of birth and M of death.
Every grey cell and every black cell that arises as the result of a muta-
tion of a grey cell develops into a clone according to a birth and death
process. For simplicity it will be assumed that initially there is only one
grey cell, the ancestor of all future grey and black cells. This assumption
is not made in the model of Neyman, but it puts no essential restrictions
on the proposed method to evalute the final distribution. Assume that
the probability that a black clone of m cells is visible is ®,,, with 0 < @,,
<1 and @, = 0. The subject of the study is the joint distribution of the
number of grey cells and the number of visible black clones at time 7.

The basic differential equation for the generating function has been
deduced by Neyman [3] as follows. Let X (f) be the number of grey live
cells at time ¢ and Y (t) the number of those black clones that have been
generated by mutation before time ¢ and will be visible at time 7 > .

Let

(71) Qm,n(t) = {X(t) =m, Y(t) = ’)’L}
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Using these assumptions and formulae (60) and (61) the probability
that a clone of black cells generated by a mutation at time ¢ will be
vigible at time T is equal to

(12) H(T—1) = [1—LB(T—)1[1—MB(T—1)] Y [LB(T—1)]""'®,,.

Now, by the usual argument, the system of differential equations
corresponding to the joint distribution of the number of grey cells and
the number of visible black clones at time 7' will be found to be

(73)  Gma(t) = A(m—21)gp_1u(O)+II(T—)y(M+1) @101 (1) +
+ [+ (=TT — ) 9| (m+1) @y 1,0 (1) — (A4 4 2) MG 0 (2).
Hence

G a6
(14) —- — {22 — (A ) u+ I =)ot [t (L= THT = )]} = = 0,

where G(u,v,w,t) is the generating function associated with the con-
sidered joint distribution. The boundary condition is G(u, v, w, 0) = u.

This is the basic equation obtained by Neyman.
We now proceed to determine the probabilities ¢,,,(¢). If the notation

(75) 5(t) = (T —1),

(76) n(t) = p+[1—I(T—1)]v,

(17) B =Atutw

is introduced, the differential equation (74) becomes

(78) 0 wr— putayot ()2 — .
ot ou

However, relation (78) is the differential equation (34) with w =1
considered in section 2. It is now clear that

[\4 8

(79) Qm,n(t) == pm,n,r(t)y

r

I
=)

where p,.,.(t) are the coefficients of the expansion of the function
G(u,v,w,t) satisfying equation (34), while 6(¢), n(¢f) and p are given
by (75), (76) and (77).

The probabilities p,, ,,(t) can be computed, as was shown in sec-
tion 2. Then approximate values of the ¢,,,(f) can be evaluated from
the sum (79).
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