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1. Suppose we have a convex body and a level board with a circular
hole in it. Suppose that in whichever way we place the body above the
board, we can translate it by parallel motion to a position above the
hole so that, if dropped from there, it will fit exactly. Is the body a ball?

This problem was suggested to one of the authors by Hugo Stein-
haus. The purpose of this note is to give an affirmative answer. To check
whether a given convex body of uniform density is a ball, we suggest
the following test: The body is lowered on a string which moves along
the axis of symmetry of the hole in the board, and the string is under
observation. The test will be called successful if the string does not move
sideways before slackening and after it slackens, the body fits the hole
exactly (non-fitting can be detected by putting a source of light under
the board). The body is a ball if and only if each such test is successful.

Tn the proof we shall find it more convenient to fix the body and move
the board. The mathematical model for the problem is as follows. We
consider the eylinder %

€ = {(m7 y,2)x*+y2 <1, 2 > 0}

in €3 and we associate with # the sets

0

¢ = {(=,y,?)|r*+y? <1, 2> 0} = the interior of ¢,
9 = {(z,vy,0)a2+y? <1} = the base of ¢,
9(} = {(z, v, 0)[x*+y*> < 1} = the interior of Z,
A = D—}) = the base circle of ¢,
a = {(x,y,0)}= the base plane of ¥.
Every image 7% of ¢ by an isometry 7z will be called a directed

0 0
eylinder with interior t%, base t2, interior of base 72, base circle 74’
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and base plane ra. With any directed cylinder %’ we shall associate its
direction d%’ which is a point on the sphere

S = {(x, 4, 2)|w*+y24-2* = 1}

defined as follows: If ¥’ = % where 7 is a rotation about (0,0, 0), then
d%’ is the centre of the hemisphere %’ ~ S?; any cylinder obtained
from %’ by translation has, by definition, the same direction as %'.

Now let # be a closed bounded convex set and let % be a directed
cylinder with base 2 and base plane a. We shall say that ¢ sits on 2 if

(*) 2 < &, o

(*%) every point of # which lies on the same side of « as belongs to €.

There is no further assumption about those points of # which lie
on a. The positive answer to the question of Steinhaus is obviously
a consequence of the following

THEOREM. If for every direction d, there ewists at least one directed
cylinder €, of that direction (i.e. with d€, — dy) which sits on B, then %
s a ball.

The proof will be prepared in sections 2 and 3, and its final part
will be given in section 4.

2. We introduce some new notions. If % is a directed cylinder with
base plane a, then every point of & which is on the same (opposite)

0
side of a as € will be said to be above (below) a. A set of points will be said
to lie above (below) a if every point of the set lies above (below) a.

If €,,%, are directed cylinders with base circles %" 1y X5 and base
planes a,, a,, then we shall say that €, and %, meet properly if

(a) A"y ~ A, is a two-point set,

(b) if the two ares in which ', ~ #, divides ¥ ; have different
lengths, then the greater of these arcs does not lie above o (8; ) =71, 2;
T #J).

To illustrate this notion, let € be the directed cylinder {(z, v, z)|z2
+¥* <1, 2> 0} and let w be a translation in the direction of the
positive z-axis such that u# ~ # has two points. If » is a rotation about
the common chord of u#" and # with rotation angle smaller than =/2,

then € and »u% meet properly if and only if » takes the positive z-axiy
towards the positive z-axis.

The main result of this section is
LEMMA 1. If €., €, are two different directed cylinders sitting on %
0 0
and €, ~ €, # O, then €, and €, meet properly.
The proof is based on auxiliary propositions (A), (B) and (C). The
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base, its interior, the base circle and base plane of %; will be denoted by
0
D, 9;, #; and o; respectively. We assume throughout that €,, €, both
0 0
sit on # and %, ~ €, # 9.

0 0
(A) We cannot have 2, below o, and simultaneously 2, below a,.

0 0

Proof. We assume that 2, lies below a, and Z, lies below a,. It is
clear that the base planes a;, a, cannot be parallel; let m = a, ~ a, be
the line which they have in common. Let of be the open halfplane (not
containing m) equal to that part of o; which lies above «; (¢ # j). Thus

0 0

(D, v D) ~ (0] v ay) = 0.

Let # be the open subset of &° consisting of all those points which
lie simultaneously above a, and above a,. It is clear that & is one of the
four regions into which &° is partitioned by the planes a,, a,, moreover

Fr.@:arua;um.

If for any point PeZ we denote by P, the point in FrZ which is
nearest to P (or one of these points, if there are more), then clearly

0 0
Pyeal w ay. Now let Pe%, ~ €,. Then Pe? and Pyeay v a;. But P,

0 0
is the orthogonal projection of P into a; or a,, and from Pe%, ~ €, it

0 0
follows that this vertical projection is either in £, or in &, and hence

0
certainly not in a}"] o aj . This contradiction shows that we cannot have 2,

0
below a, and Z, below a,.

(B) If either of the sets A"y ~ ayy H 'y ~ a; 18 @ two-point set, then so
is the other,

%1ﬁa2=%2ﬁa1:¢%‘1ﬁ%2,

and if the two ares in which Ay ~ Ay divides A"; have different lengths,
then the smaller of these arcs lies above a; (¢ +# j).

Proof. Let PQ denote the segment of the straight line joining points
P and @. We show first the following implication

(b) if A3~ ={P;,Q;} and P; #Q;, then X;~ o = {P;, Q;},
.P:,- * Qj and PiQ’i c Pij.

Let A ~ a5 = {Py, Q:}; P; # ¢;. Since #7; is not a subset of «;,
there are points of »#'; which lie above «; and are arbitrarily close to P;
and @; respectively. From #; ¢ # and by condition (++), it follows that
_Pi, Qie%j N ap = 99-. Let m denote the line a; M Og. We have .P,,;,Q,,;Gm
which implies that m ~ 2; # @ and therefore X ~ o = H; ~ m 1is
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a two point set, say {P;, @;}; P; # ¢;, and moreover P;Q; = P;Q;. This
proves (b).

Now, to prove the first part of (B), we assume without loss of gener-
ality that 7'y ~ ay = {P;, @1}; P, # @,. Then, applying (b) with 4 = 1,
J =2, we have ¥~ a ={P,,Q,} and P,Q, = P,Q,. Applying (b)
again, with ¢ =2, j =1, we obtain P,Q, = P,Q,, whence {P,,Q,} =
= {P3, @,}. Therefore A", ~nay = A3~ ay = H; ~ X ,.

To complete the proof of (B), we shall show that if #7 denotes the
greater of the two open ares into which 7, is split by #", ~ #',, then X
does not lie above a,. Assuming that #7 lies above «,, we consider the
diameter chord A of %', which is parallel to P,¢,. Obviously the two-
-point set 4 ~ #', is in A7, thus 4 lies above a,. It follows from (+*)
that 4 < ¢, and therefore the orthogonal projection of A into a, is
a diameter of ",. If follows that the centre I, of »#°, projects on the cen-
tre K, of #7,. Since the centre of a circle of a given radius is equidistant
from all chords which have a given length, the distance of ¥, from P,(),
is the same as the distance of F, from P,@,. Thus #, 1/, is the base of
a triangle whose other sides lie in «, and a, and have equal lengths. Tt
follows that F,F, is not perpendicular to a, contradicting our previous
observation that F, is the projection of F,. The contradiction shows

that 7 lies below a,. In the same way we show that ¥ must lie below ey s

0
(C) Z; cannot lie above a; (i,j =1, 2).

0 0
Proof. Suppose that 2, is above «,. Then, by (*+), 2, c %, and so
H'y = €. A5, the orthogonal projection of 7, into «, is an ellipse, with
unit major semi-axis, contained in Z,. Thus %, meets %, at the ends

of the major axis. Hence 2, meets the boundary of %, in two points R
: 0
and S, such that the segment RS is parallel to ;. 2, ~ a;, = O implies

that B and S lie above q,.

Let R’ be the point of ', such that RR’ is perpendicular to «,, and
let y be the plane containing RR’ that is tangent to #',. A point x will
be said to be below (above) y if x and 8 are (are not) on the same side of y.
Suppose ze#. As # is convex, Rr — #4. But all points of # near to R
lie in ¥, and Ra contains points arbitrarily near to R. Hence x is either
below y, or x, R and R’ are collinear.

Now consider the cylinder % that sits on %, has direction perpendi-
cular to » and which has points above y. Let 2, # and « be, as usual,
the base, base circle and base plane of . 2 must lie below y, as the
only points of # not below y lie on the line through R and R’. Hence, by

0
(x+), Re®. # thus has points above a, and hence 2 ~ ¢, + @ (using (**)
on %,). This implies that a ~ #", is a pair of points and so is a ~ A,.
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By (B), # meets ", and %, each in two points. Let H ~ A, = {Py,Q:}
and A ~ Ay = {P,, Q). Let 1, be the length of the arc of 2 which
joins P, to @, and lies above «,. By (B), |, < . The segments P,Q, and
P,0, are at the same distance from v, yp is8 perpendicular to «; and a,,
and y is tangent to the circles 2, and ;. Hence the segments P,
and P,Q, are of equal length. Thus, if [, is the length of the arc of 7~
which is above «, and which joins P, and @,, either I, = [, or I, = 2n—1,.
But as P, or Q, is above a,, I, < I, and so 2z —{, < l;. This contradicts

0
the fact that I, <m. We have therefore shown that %, does not lie
0
above a,, and similarly 2, does not lie above a,.

Proof of Lemma 1. If a, = a,, then #7, and ', are circles in the

0 0

same plane which do not coincide (since %, # €, and ¢, ~ %, + 0),
thus #, ~ #, has two points. Clearly none of the arcs in which #7; is
divided by #, ~ A, lies above a;. If a, # a,, then these planes cannot
be parallel since otherwise we arrive at a contradiction with (C). Let m
denote the line a; ~ a,. This line divides each «; in two open halfplanes
(neither containing m); let «f be the one above «; and a; the one
below «; (i +# j). Suppose for a moment that

0 0

Dy~nm=Dy~nm=0,

Then one of the following four possibilities must occur:

0

0
(i) 2, c af and 2, < a,
0 0
(ii) 2, c af and 2, c a;,
0 0
(iii) 2, < oy and 2, < a3,
0 0

(iv) 2, < a, and 2, < ay.
But each of these contradicts either (A) or (C). We have shown

0 0
that Z; ~ m = O implies Z; ~ m # O which in turn implies that 2 ~ «;
is a two-point set. Thus the assertion of Lemma 1 follows from (B).

3. We shall say that a cylinder % sits flat on # if € sits on 4 and

0
B ~ € = O. By the angle between two directions we shall mean the
length of the shortest arc on the unit sphere joining these directions.
Our second lemma is as follows:

LEMMA 2. Suppose that € sits on # and it does not sit flat. Then there
exists a point @ above a and on the axis of symmetry of € with the following
property: For every direction d' which is orthogonal to d€ ihere ewist exactly
two directed cylinders €., €, sitting on # such that
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(a) each of the base circles A"y, A", passes through Q and cuts A at two
points;

(b) each of the directions A€, d%, is orthogonal to d'.

(c) the angle between A%; and A% (i = 1,2) is at most /2.

The proof is based on auxiliary propositions (D), (E), ..., (K).

(D) Let € sit on # and suppose that € does not sit flat. Then every

0
point P in 9D is the orthogonal projection on a of a unique point P,eFrA
which lies above a.

Proof. To prove the uniqueness of P,, assume that Py, P,eFr#
are both above a and project on P. Then one of them, say P,, is higher
above a than P,. The cone with vertex P, and base 2 is contained in %

0
and P, is in the interior of this cone. Hence P,c%, a contradiction.

0
To prove the existence of P,, note that ¢ ~ # + O implies the
existence of some Re%Z which lies above a. The cone with vertex R and

0
base Z is contained in # and above every point P in 2 there are points

0
of this cone. Hence, as # is bounded, above every P in 2, there is some
Pl eFr 4.

A direction de? will be called regular if there exists exactly one
cylinder ¢ of that direction sitting on 4.

(B) If € sits on & and € does not sit flat, then A% is reqular.

Proof. Suppose d¥ is not regular and denote by %’ another cylinder
which sits on # and has direction d%. The base planes a, o’ of ¥ and %’
are parallel and since none of them can lie above the other (see (C)),
they coincide. The bases 2 and 2’ are different, for otherwise we would

have € = €’. Let Peé__@’_ As there are no points of # outside €’ and
above a, P is not an orthogonal projection on « of any point P, e%# which
lies above a. By (D), this contradicts our assumption that € does not
sit flat on 4.

(F) The set of all non-regular directions is finite.

Proof. Let {d.}..r be the set of all non-regular directions. It follows
from (E) that we can associate with every d, a cylinder %, which sits

0 0
flat on %, such that d¥, = d,. Let us show that v # u implies %, ~ %,
= O (every 7, puel). Assuming the contrary, we have, by Lemma 1
that ¢, and €, meet properly. Then #', ~ % . 18 a two-point set which

0 0
shows that the dises 2, and 2, intersect. They obviously do not lie in the
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same plane (being orthogonal to different directions) which implies that

0
..”3’1 ~ €, # O, whence & ~ ‘05# # 0, contradicting the assumption that €,
sits flat. 5
Now let us consider an open ball 4 which contains #. Let 6, be the
minimum of all distances d(FP, ) where PeZ# and QeFrJf It is clear

that if € is a cylinder smtlng flat on #, then the volume of % ~ % is greater

than nd, (the base of ‘K N % is a unit disc). By the above, the sets % ~ @
are all pairwise disjoint. Since each of them has volume greater than =d,
and they are all contained in %, we conclude that T is finite.

From now on we shall fix our coordinate system so that the cylinder ¢
assumed in Lemma 2 is {(x, v, 2)|#*+y* < 1, 2 > 0} and the direction d’
is on the positive part of the z-axis.

Let % be the group of all orientation preserving isometries of &°.
To define a topology in ¢, we note that ¥ = £°0,, i. e. ¥ is the semi-
-direct product of the subgroup €, of all rotations about (0, 0, 0) (which
we identify with the group @, of orthogonal 3 x3 matrices with deter-
minant 1) and the subgroup of all translations (which we identify with
&*). There is thus a natural bijection ¥ « &3x 6, which induces a topo-
logy in % from the product topology in &°x6,. It is well known that
in this topology, the mapping

6: G X E —~ &,

given by a(g, P) = ¢P, is continuous.

(G) Let u: I — % be a continuous mapping of the unit interval I into 4.
Denoting by u; the image of t, we assume that the isometry u, leaves A
invariant, i. e. ug A" = A", and that the plane of the circle u, A" is parallel
to the z-axis. Then there exisis a ¢, in I such that u, A cuts the z-awis.

Proof. We denote by F: I x4 — &° the composition of the conti-
nuous maps

Hxe a
IxAH — GxE > &

where &: # — &% is the inclusion map. For every ¢ in I, let F,: o — &°
be given by F,(P) = F(t,P) for all PeX'. Then

Fo(Xy=pe¥ =F and F(KH)=pm;X.

Ag the plane of u,# is parallel to the z-axis, u,# either meets the
z-axis, or u,;# bounds a disc that does not meet the z-axis. Suppose the
latter is true. Then F,: # — &* is null-homotopic in &°—{(0,0,z2)}
whereas F,: 4 — &° represents a generator of the (non-trivial) funda-
mental group of &°*—{(0,0,2)}. It follows that F, and F, are not

Colloquium Mathematicum XITI.2 16
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homotopic in &*—{(0, 0, 2)}. ¥, is a homotopy sending F, to F,, in &°,
hence F(Ix.#) must meet the z-axis. Thus there exists a ¢, in I with
the property that Fy (#) = A" cuts the z-axis.

Let us denote by £ the set of all cylinders ¢’ which sit on # whose
directions d%’ form angles not greater than =/2 with (0, 0, 1).

(H) There exists a 1-1 mapping o : 2 — & which associates with every
cylinder €' e 2 an isometry o(€') such thai

1) € = o(%')¥ (i.e. €' is the image of € by w(¥’))
and

2) the set w(2) = {w(€')|€ « 2} is a compact subset of 9.

Proof. Let I'y = ¢ be the set of all those isometries 7% which are
of the form 7 = »p, where ve&® and p is a rotation through an angle at
most w/2 about an axis through (0, 0, 0) in the z, y-plane. It is clear
that for every %’e {2, there is a unique isometry w(%’)el, such that
€' = w(¢')¢. Thus a mapping o : £ — ¢ is defined and it satisfies 1).
It is immediate that o is 1-1.

To prove that o(£2) is compact, consider the set I, « ¥ given by

T, = {re9|t€c Q).

Evidently o () = I'y ~ I'}, and since I'; is obviously closed, it will
be sufficient to show that I, is compact. We consider the auxiliary set
Iy = {reG|7(0, 0, 0)e#} which is equal to £0, (note that & < &° c %)
and so is compact, as it is homeomorphic to a product of two compact
sets. But I'} = I', and [ is closed, for if we have a sequence 7,, 7,, 73, ...
of isometries such that 7,4 € 2 which converges to 7, then it is easily seen
from (*) and (**) that 7% sits on B and the angle between dt¥ and the
positive z-axis is at most =/2, whence 1% 2. Thus I} is compact.

Let us consider the mapping d : 2 — &* which associates with every
cylinder its direction. It is clear that the set dQ2 = {d¢’|¢ € {2} is identical
with the upper hemisphere.

+
S = {(x, ¥, 2 +y*+2* =1, 2 > 0}.

If we define the topology in £ so that the map o above is a homeo-
morphism, then (2 is a compact space, moreover we have

+
(I) The mapping d : Q — F* is continuous; and if F denotes the finite
set of all non-reqular directions (see (C)), then the inverse mapping
d-!': (}2—% - 0
18 continuous.
Proof. Let x: ¥ — ¢, be the map which associates with every iso-
metry T = vp, where ve& and pe®,, the rotation p, i. e. » can be regarded
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as the projection of ¥ = £°6, onto @,. Since the topology of @ is that
of &*x @y, x is obviously continuous. For every €'« 2, we have, by (H)

A" = d(0(€)%) = a(x(w (")), d%) = a(x(w(€")),(0, 0, 1)),

’

1. e. d i8 a composition of continuous maps. 4
Suppose that # = {F,, F,, ..., F,}. The continuity of d~' on ¥*—F
will follow if we show that d~' is continuous on every set of the form

_|._

S*—\J¥; where ¥'|,%,,...,%, are arbitrary open neighbourhoods of
Fi, Fyy..., F,. Let d”'¥"; be the set {¢’eQ|d%¢’ ¥}, this set is open by
the continuity of d. Clearly Q—|(Jd '¥"; is compact and

+
d: (Q—Ud 7)) = (= U7%%)
is onto and 1-1. Hence, by a well-known theorem, its inverse
‘ +
At (S —U7) - (2—UJd )

is continuous.

+
(J) If all directions belonging io the intersection of 8* and the yz-plane
are regular, ther there exist at least two cylinders €,, €,e 2 such that

1) each of the base circles # y, A, cuts the z-axis,
2) d€¢, and d¥, are in the yz-plane.

+
Proof. Consider the map f: I - %* given by
1) = (0, sin—1 swt)
F(1) =0, sin—-%, cos 5

+
for 0 <t < 1. Since f(I) is in the yz-plane, we have that f(I) c ¥*—%.

Denote by u: I — % the composition of the continuous maps
f -1 o
[ > (P —F)— Q> 9.

Let us verify that p satisfies the assumptions of (G). First we note
that d 'f(0) = d~'(0,0,1) = % and thus
pe = w(d 'f(0)% = ()€ =€
by (H), 1). It follows that w,# = #. The ecylinder € = d~'f(1)
= d7'(0, 1, 0) has direction (0, 1, 0) and thus the plane of its base circle
K' is parallel to the z-axis. Moreover,
e = o(df1)€ = o(€¢)€ =€

by (H), 1), whence it follows that u,# = X#”. Thus by (G), there exists
a ¢, in I such that the circle y, o cuts the z-axis. Let %, = u,%. To
obtain the direction of ¥,, we note that, by (H), 1) we have

d7f(t) = w(d ()€ = wm€ for every t in I,
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and applying this with ¢ = ¢, we get d™'f(t,) = u, % = %,. Hence € 2
and d%, = f(t,)ef(I). Similarly, taking instead of f the mapping g¢:
_’_

I — %* given by

. T T
gt) = (O, —sin —2—t, 003—2‘ t)

for 0 <? <1, we find another cylinder %,¢ 2 such that d%,eg(I). Since
f) ~gI) = {(0,0,1)}, the cylinders ¢,, %, could coincide only if they
were both equal to %, but this is obviously impossible. Clearly the direc-
tions d¥%,, d%¢, are in the yz-plane.

Let us denote by € the unique point on the positive z-axis which
belongs to Fr#. The existence and uniqueness of ¢ follow from (D).

(K) If €,¢2 is a cylinder whose base circle A", cuts the z-axis, then
Qexy and Ay ~ K is a two-point set.

Proof. Suppose first that d%; is in the xy-plane. Then the base plane
ay of %, contains the z-axis and #" ~ a; = {P;, P,} where P, and P, are
diametrically opposite on 2. By (B) we have %", ~ # = {P,, P,} whence
it follows that %", must cut the z-axis in two diametrically opposite points;
one of these must be above the xy-plane, and since it belongs to Fr#
(note that K, « Fr#%), it must be (.

Now suppose that the angle between d%, and the positive z-axis is
less than = /2. Let R be any point of ", which is on the z-axis. To prove
B = @, it is enough to show that R lies above the zy-plane, since obviously
we have ReFr4.

Suppose first that B = (0, 0, 0). Let s be the line through (0, 0, 0)
containing the direction d%, and let Ses ~ %, be different from R. Since

s 0
the angle QRS is less than =/2, it is evident that (s ~ €,) ~ % # O

whence %1 ~ féo) # . It follows, by Lemma 1, that €, and % meet properly
and therefore #'; meets the base plane of # i.e. the ay-plane, only at
points of 7, contrary to (0,0, 0)ex* ;. Thus R + (0,0, 0).

Assume now that R lies below the ay-plane. Let s be the line through

R orthogonal to the base plane a; of %, and let Ses ~ %, be different
N

from R. The angle QRS is by assumption smaller than 7/2 whence the
0
point (0, 0, 0) of QR lies above a,. But as & cannot lie entirely above «a,,

0
by (C) we have 2 ~ a, # @. It follows that # ~ a, = {P,, P,} where
P, # P,. We note that P,, P, cannot be diametrically opposite points
of 2, for in that case (0, 0, 0) would belong to the chord P, P, and thus
to a;. By (B) we deduce that &', ~ # = {P,, P,} and that the smaller
of the two arcs in which " is divided by .#, lies above «,. But as the
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centre (0,0, 0) of K lies above a,, this is a contradiction. Thus R does
not lie below the xy-plane.
We conclude that R lies above the xy-plane, i.e. B = . This also

0 0 0
proves that ', ~ ¢ # O, whence ¥, ~ ¢ # @. By Lemma 1, 5, ~ A
is a two-point set.

Proof of Lemma 2. We assume first that all directions in the
yz-plane are regular. Then, if ¢ is the point considered in (K), we have
by (J) and (K) that there are at least two cylinders %,, ¥,¢ Q2 such that
conditions (a), (b) and (¢) of Lemma 2 are satisfied. On the other hand,
it is easy to verify that for every point ¢ on the positive z-axis there
are at most two directed cylinders %,, ¥, which gatisfy (a), (b) and (¢).
Thus the existence and uniqueness of ¢, and %, are proved. Let us observe
that the angle ¢ between d%, and d%, is entirely determined by the posi-
tion of @ and does not depend on d'. Moreover 0 < ¢ < m.

If follows from (E) that the direction of the positive z-axis is regular.
Thus, from (F), we deduce that there can be only finitely many planes

+

containing the z-axis and some non-regular direction in &> It follows
that there can be only finitely many directions d’ orthogonal to d% for
which the assumption of (J) is not satisfied, after the coordinate system
is chosen so that d’ is on the positive z-axis. If d’ is one of these finitely
many directions, then we can find a sequence d,, d,, ds, ... of directions
orthogonal to d% such that d = limd,, and for every d, there are cylinders

NM—00
%\, €y « Q2 satisfying the hypothesis of Lemma 2, with d,, in place of d'.
Since (2 is compact, we can find subsequences %71, €72, ... and %1, 5,2, ...
which converge to limits %, and %, in 2. As the angle between d%7* and

i
A%k is > 0 and d : 2 —9* is continuous, the angle between d%, and d%,
1s also ¢ and therefore %, # %,. Obviously %, and %, satisfy conditions
(a), (b) and (c).

4. By using Lemma 2, we are now able to prove the Theorem. Let &
be a directed cylinder which sits on #Z and does not sit flat on %, and @
be the point of Fr# on the axis of symmetry of ¢ and above the base
plane a of €. As before, # is the base circle of . There is one and exactly
one sphere ., through ¢ and 2. Any circle which passes through @ and
meets # in two points meets . in three distinct points and hence is con-
tained in .. Now there are at most two directed cylinders %,, ¥, which
have directions perpendicular to a given direction d’ perpendicular to d%
such that their base cireles 2¢°,, %, pass through ¢ and cut 2 in two
points. By Lemma 2 two such directed cylinders €,, ¥, always exist,
and moreover they sit on #. As %,, #, < Fr%, it follows that every
unit eircle in ., which passes through @ and cuts 2 in two points, is the
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base circle of some cylinder sitting on % and is contained in Fr#. Let O
be the centre of &, and v the semi-vertical angle of the right circular

cone with vertex O and base . If P is any point of % such that the
AN

angle POQ is less than or equal to 2y, there is a unit circle through P
and ¢ which meets > in two points. Hence the whole spherical cap of .#,
with axis 0@ and which subtends a semi-angle 2y at O, is contained in
Fr4.

Now let @' be any point of #". Let " be the unit circle through ¢,
with the line 0@’ as axis of symmetry. Then #' <= %, and 2" is the base
circle of some cylinder %’ which sits on #Z (by above) and %’ does not

sit flat on Z since %’ contains the point Q" in & ~ Fr#. Hence, applying
the above technique to @' and ", the spherical cap of % with axis of
symmetry OQ’ which subtends a semi-vertical angle 2y at O is contained
in Fr#. But as ' was just an arbitrary point of ", this shows that the
spherical cap of ¥ with axis of symmetry 0Q and semi-angle 3y is con-
tained in Fr#. But then this is true for ¢’ in place of . Hence the sphe-
rical cap of ¥ with axis 0Q and semi-angle 4y is contained in Fr %. Itera-
tion of this technique shows at once that the whole of % is in Fr#. By
convexity, the ball bounded by % is in #. If Pe# and P lies outside .7,
then the fact that all points on the lines from P to % belong to # contra-
dicts the fact that & < Fr#. Hence % is simply the ball bounded by .
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