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1. Introduction. The author has shown in [1] how to construct
finite hyperbolic planes from the finite field GF(¢?) of ¢* = 2% elements.
In fact, the planes constructed there are finite regular planes of type
Pi (k=2"" m=2""41) in the notation of Szamkolowicz [4].
A recent result of Dembowski [2] shows that the points and circles of
an inversive plane of even order can always be represented as the points
and (non-trivial) plane sections of an ovoid in the projective 3-space,
2,, over GF(2"). This implies that any affine plane corresponding to such
an inversive plane can be coordinatized by GF 2h, i. e., can be thought
of as the “Argand diagram” for a GF(2*). Combined with the results
of [1] this implies that a finite hyperbolic plane (and hence a P o)
can be constructed from any affine plane derived from the original
inversive plane. The purpose of the present note is to show how
to carry out this construction of a finite hyperbolic plane directly
from an inversive plane of even order without recourse to the inter-
mediate 2,.

2. Definitions. An inversive plane # is a collection of points and
distinguished subsets of points called circles, satisfying the axioms [2]:
(I.1) Three distinct points are contained in exactly one circle.

(I.2) If ¢ is a circle containing point @ but not point P, then there
is exactly one circle ¢’ containing P and tangent to ¢ at (. (By definition,
two point sets are tangent if and only if they have exactly one point in
common.)

(I.3) There are at least two circles. Every circle has at least three
points.

It can be verified in the standard way that if one circle contains
exactly n-1 points, then every circle contains exactly n-+1 points, every
pair of points is contained in exactly n+1 circles, and there are exactly
n?+1 points in #. The number » is called the order of J.
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The following Lemma 1 is an essential step in our construe-
tion.

LeMMA 1. Let . be of even order m. If P is a point not on the circle &y
then the circles containing P and tangent to ¢ are exactly the n1-1 circles
containing P and some other point P*.

Proof. (In this proof we write “tangent circle” as an abbreviation
for “tangent circle to ¢ through P”.) Let I be any circle through P and
two points E, 8 of ¢. We first show that at each point ( £P) of I there is
exactly one tangent circle (to ¢, through P). At points R, 8 of  this is the
content of (I.2). At any other point L (£ P) of I we consider the n—1
circles determined by L, P and points (# R, 8) of ¢. An odd number of
these meet ¢ in exactly one point, since n—1 is odd. That is, there is at
least one tangent circle through I and P. Letting L range over [, this
accounts for n—2 of the n—1 tangent circles (at points = R, 8) to c.
The remaining one cannot contain any L (+ P), for then L would lie on
an even number of such circles. Hence the remaining one contains
only P.

This shows that no two tangent circles have another point of I in
common. That is, through an intersection P* £ P (if any) of two tangent
circles there is no circle through P meeting ¢ in two points. Hence, if some
pair of tangent circles meets at P* -~ P, then every circle through P, P*
and a point of ¢ is a tangent circle. This accounts for all tangent circles,
hence the required result. It only remains to prove that some pair of
tangent circles actually intersects at P*. This follows directly by counting
the points on the n-+1 tangent circles, assuming no two have points
(except P) in common. This gives n(n-+1)-+1 points. But there are only
n®+1 points in the entire plane .7!

3. The hyperbolic plane. We can now construct a finite hyperbolic
plane # from an inversive plane .# of even order in the following way.
Let I" be a fixed circle of .#. By Lemma 1, each point P (¢ I') determines
a unique point P*, contained in each of the n -1 tangent circles to I’
through P. The Points of # arve the pairs {P, P*}. The Lines of # are
the tangent circles to I The Point {P, P*} is incident with the line [ if
and only if the point P is on the tangent circle [. We have only to verify
that # satisfies the axioms for a finite hyperbolic plane [1]:

(H.1) Two Points determine exactly one Line.

(H. 2) Through each Point not on Line 7 there are at least two Lines
not meeting .

(H. 3) If a subset, ., of the Points of 2 contains three Points not
on a Line, and contains all Points on Lines through pairs of Points of &,
then & contains all the Points of .
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The verification of axioms (H. 1)-(H. 3) follows.

(H.1) Let {P,P*} and {@,Q*} be two points. The n-1 circles
through P and ¢ include all points of .#, in particular P*. The unique
circle [ through P, @, and P* is tangent to 1", by Lemma 1. Hence [ contains
0*, and is the required Line.

(H. 2) At a Point {P, P*} there are exactly »-41 Lines. But each
Line ! contains exactly n/2 Points, since one point of the circle is on I,
and the remaining n are identified in pairs. That is, there are exactly
n/2--1 Lines at {P, P*} which fail to meet I.

In fact, this shows that # satisfies the stronger axiom

(H. 2') Through each Point not on Line [ there are exactly m = 2
Lines not meeting .

If a finite plane satisfies (H. 1) and (H. 2’) (and contains at least 3
Points not on the same Line, and hence not all Points are on two Lines)
then it is reqular, i. e., all Lines contain the same number, k, of Points.
For let [ and [’ contain & and k' Points respectively. Then at a Point
P¢l o U every Line either meets | or fails to meet I. That is, there are
exactly m-k Lines at P. Similarly there are m -+ &’ Lines at P. Hence
b= T,

Axiom (H. 3) is a consequence of

LEMMA 2. A plane # satisfying (H. 1) and (H. 2") necessarily satisfies
(H. 3) if (k—1)2 > m.

Proof [3]. If # does not contain 3 Points not on a Line then (H. 3)
is satisfied vacuously. So we can assume that 2 is regular, with & Points
on each Line. Let P, @, R be three points of .. Then . contains the &
Points of Line PQ, and hence the k(k—1)-}1 Points on Lines joining
Points of PQ to R. 1f (k—1) > m this is greater than m-} k. But each
Point of # is on exactly m-+ k Lines. Thus each Point is on at least one
Line containing at least two Points of .. Hence every Point of # is in .7,
as required.

In the present cases k = n/2 and m = n/2+41, so the condition
(k—1)2 > m of Lemma 2, and hence axiom (H.3), is satisfied when
n > 6.

4. Inversive planes of odd order. If .# is of odd order, coordinatized
by a field, it can be shown (more or less as in [1]) that the circles orthogonal
to a given circle yield a finite hyperbolic plane. (However, such a plane
is not regular.) Alternatively, if .# (of odd order) satisfies only (I.1)-
(I. 3), and has a sufficiently strong orthogonality relation for circles (in
particular strong enough to guarantee the analog of Lemma 1), then
a hyperbolic plane can be constructed from .#. This problem will be
discussed elsewhere,
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