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0-TIGHT SURFACES WITH BOUNDARY
AND THE TOTAL CURVATURE OF CURVES IN SURFACES

BY
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The well-known Fenchel inequality says that the total curvature
of a closed curve in E?® is greater than or equal to 2=. For knotted curves
this can be sharpened. We consider unknotted curves bounding a simply
connected region in some compact surface M in E°. Under the assumption
that M is 0-tightly immersed into E* we get a sharper version of the Fen-
chel inequality. The same result is obtained without global assumptions
on M but under specific assumptions on the simply connected region
bounded by the curve.

We consider a smooth immersion f: M — E? of a compact connected
surface with or without boundary into Euclidean space. As usual we define
f to be O-tight if almost all height functions have exactly one minimum.
For closed surfaces M, O-tightness is equivalent to tightness (minimal
total absolute curvature) but in case 0M # @ it is quite different (see
(1] and [12]).

On the other hand, an arbitrary smooth closed curve ¢: §'— E*
satisfies the Fenchel inequality (cf. [3])

[ kids > 2,

(4
where |k| denotes the usual curvature of ¢, and equality characterizes
plane convex curves. Sharper versions of this inequality hold for ¢ being
knotted (see, e.g., [9]).

Now, let us assume that ¢ is unknotted, i.e. ¢ is the boundary of a simply
connected region D lying in some surface f: M — E* such that ¢ = f|6D
with D € M. The aim of the following considerations is to get sharper
results than the Fenchel inequality in this case under certain assumptions
involving the curvature of D or that of M.

Of course, there are convex plane curves bounding a simply connected
region with arbitrarily large positive or negative curvature parts. But if
we assume that the Gaussian curvature K is nonpositive inside of D (for
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instance: if D is a minimal surface spanned by c), then the Gauss-Bonnet
formula leads to

flk[ds;fkads = 2n— deo = 2n+ [ |K|do,
c c D D
where k, denotes the geodesic curvature, and equality implies that ¢ is
asymptotic.

Similarly, we have the following

PROPOSITION. Assume that D = M\ 0M is a closed disc and f: M — E*
18 0-tight. Then the closed curve ¢ = f| 2D satisfies

[Iklds>2n+ [ |K|do,

Dn{K <0}

where equality holds if and only if f|M \D is also 0-tight.
An example due to Rodriguez has shown that there exist 0-tight
surfaces with nonplanar boundary curve ¢ (see [11]).

A proof of this proposition can easily be obtained if we use the well-
known fact (see [2], [4]-[6], [8], [12]) that, on one hand, the Euler charac-
teristic of M can be expressed by the average of the alternating sum of the
number of critical points of the height functions and that, on the other
hand, the total absolute curvature of f is the average of the sum of these
numbers. Then the inequality stated in the proposition is nothing but
the inequality that the total absolute curvature of f is greater than or
cqual to the sum of the Betti numbers of M (see [7] for an extension of the
proposition to higher dimensions).

In the following theorem we make more detailed assumptions on
the curvature inside of D but no global assumptions on some ambient
surface M:

THEOREM. Let f: D — E® be an embedding of a closed disc and assume
that the set Dy:= {x € D | K(x) = 0} consists of finitely many disjoint,
stmple, smooth asymptolic curves which have at most isolated points with
vanishing curvature and where all the pieces y of D, starting and ending
in 0D at different points satisfy

f|k]ds< ox.
Y

Then for ¢ = f| 0D the inequality
&) Jikids >2n+ [ |Eldo
c

K<o0

holds. Furthermore, equalily in (1) implies then that ¢ consists of pieces
which are either planar or asymptotic.
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Remark. Note that all assumptions on f are generically satisfied
except two: the assumption that D, consists of asymptotic curves (this
is the most essential assumption) and the last condition on the total
curvature of the pieces of D, starting and ending in ¢D at different points.
The proof will show that all the pieces are plane curves and that this last
assumption could be replaced by the following: all the pieces have zero
winding number of the tangent. In a local version of the theorem for
“small” disecs D inside of a given surface this last condition would be
automatically satisfied.

Proof of the Theorem. We first observe that under the given
assumptions each piece in D, with nonvanishing curvature is planar by
the Beltrami-Enneper formula 72 = — K for the torsion of asymptotic
curves (cf. [13], p. 101). On the other hand, this plane is the tangent plane
of each point in that piece, which follows easily from the vanishing of the
normal curvature. By continuity this holds also for isolated points with
k = 0. Thus each component of D, is a planar curve. Hence the geodesic
curvature k, of such a curve is just the usual oriented curvature k.

Obviously, we can neglect the pieces in D, having end points in D,
and a priori each of the other components is either closed lying in D or
nonclosed starting from 0D and ending at 0D. We will see that the first
case cannot occur.

Assume that there is a closed plane asymptotic curve with K = 0
bounding a simply connected region. Because of the assumed finiteness
there is at least one such curve y with K > 0 or K < 0 everywhere in
its interior B. Clearly, K < 0 cannot oceur because a point with maximal
distance from the plane spanned by y would be a point with nonnegative
curvature. On the other hand, K > 0 cannot occur because the Gauss-Bon-
net formula and the Hopf “Umlaufsatz’’ would imply (note that y is
simply closed by assumption)

2n>2n— [Kdo = [k,ds = [kds = 2m,
B 4 L4

a contradiction.

So each component of D, starts in ¢D and ends in D at different
points (here we use the assumption that the curves have no double points),
and D\ D, consists of simply connected regions, say D,, ..., D,. We can
assume that K > 0 for ¢ =1,...,r and K< 0 for ¢ =r+1,...,n.The
situation in D looks like in Fig. 1.

Now choose a suitable orientation for D, and let us denote the pieces
of 0D,\oD by ¢;, and the exterior angles (which all are nonnegative)
at the start point of ¢; by a;;, and at the end point by §;.

Now let us consider the case K > 0 in D, (i.e. 1 < ¢ < r). For the mo-
ment replace all (plane) pieces f(¢;) by the straight-line segment ¢;; between
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the end points, and denote by aj; and j; the corresponding exterior angles
(here we use the assumption that f is an embedding). This looks like in Fig. 2.
The total absolute curvature of dD; with the straight-line segments
instead of the ¢, is
(2) [ iklds+ ) (af+85) > 2w,
i

0D;n3D

where equality implies that it is planar and convex (this is a generalized
version of the corresponding theorem of Fenchel for differentiable curves)

Fig. 2

On the other hand, the integral of curvature k over c; is just the
difference of angles between the straight-line segment and c; (in this
orientation) at the end point and the start point, i.e.

(3) [kds = (85 —By) —(ay—af),
cﬁ
where we have used the assumption

[ 1klds < 27
c,'_,
which implies that the winding number of the tangent of ¢; is zero. Thus
from (2) and (3) we get the inequality
(4) [ klds+ [ kds>2m— D (ay+By)-
i

aD;n8D oD;\oD
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In case K< 0 in D; (i.e. r4+1 < ¢ < n) the Gauss-Bonnet theorem
yields

) [ klds+ [ kds> [kds =2x— [Kdo— > (ay+fy)
aD; D; Fj

9D;n4D aD\ oD

=21f+ flKIdO—Z(aﬁ-{-ﬁij).
D; F)

Summing up (4) and (5) (¢ =1,...,n) by the equality k, = k (cf.
above) each integral over a piece in dD;\ dD appears twice with different
signs, so

[Iklds>n-2n+ [ |Kldo— D' (a;+By)
J

oD K<0

=n-2n+ [ |Kldo—2(n—1)m = 2n+ [ 1Kldo,

K<0 K<o0

which proves the asserted inequality.

Assume that equality holds. Then equality holds in (4) and (5) for
each i. Hence the pieces of 0D lying in {K > 0} are parts of planar convex
curves, and the pieces of 9D lying in {K = 0} are asymptotic by assumption,
and hence planar (cf. above). Moreover, the pieces of ¢D lying in {K < 0}
satisfy |k| = k,, which implies that their normal curvature vanishes,
and hence they are asymptotic.

Remark. If D lies in some closed orientable tight surface which in
addition satisfies

(6) gradK #0 in {K = 0},

then by results of Nirenberg the assumptions of our theorem are satisfied
(cf. [10]). In this case the asymptotic curves in {K < 0} touch tangentially
the curves {K = 0}.

Using this last property Rodriguez has shown (cf. [11], Theorem 21)
that if M is a closed orientable tight surface satisfying (6) and if N = M
is a compact 0-tight surface with boundary, then dN consists of plane and
convex curves. As a corollary we infer under assumptions that equality
in (1) is impossible provided that DN {K < 0} # @, i.e. in that case we
have even the strict inequality

flklds>2-rr+ f |K|do.
¢ Dn{K <0}
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