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SOME NEW IDEALS OF SETS ON THE REAL LINE
BY
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0. This paper is inspired by a work of Schmidt [9]. Theorem 2 of
[9] shows the existence of new ideals of sets of real numbers. Like the
classical ideals of sets of measure 0 and of sets of the first category these
ideals are not trivial, i.e., they do not contain all sets of reals, they are
countably additive, they are invariant under linear non-singular trans-
formations of the real line R and they contain sets which are large from
the point of view of the classical ideals. In fact, R is the union of two
Borel sets one of measure 0 and of the first category and the other belongs
to the ideals of Schmidt. (Recall the existence of a similar partition of R
into a set of measure 0 and a set of the first category.)

S. M. Ulam told me that there are many non-trivial countably additive
ideals of sets in R™ which are invariant under all isometries and are not
included in the classical ideals. E.g., all gsets in R? which are of the first
category on almost all lines, given a “Lebesgue” measure in the space
of lines, constitute such an ideal.

In this paper I list several properties and several open problems
concerning the ideals of Schmidt. Section 3 concerns also other ideals of
sets in topological spaces.

1. For technical simplicity I will modify somewhat the concepts
of [9]. I will not use the real line but the compact topological group C
which is the direct product of w copies of the cyclic two element group
{0, 1}, +)> with discrete topology. Thus C is homeomorphic and can

be identified to the set of Cantor {32;/3**': z; = 0,1}, and the Haar
1=0

measure in C is induced by the Lebesgue measure over the unit interval I
and the Cantor mapping of ¢ onto I.

Given a set § < C and a set K of natural numbers we define a posi-
tional game I'(S, K) with perfect information between two players I
and II (!). The players choose the consecutive terms of a sequence

(t) See [5], § 2, for a more general treatment of such games.



72 J. MYCIELSKI

(g, ¢, x4, ...)eC, the choice x; is done by Player I if i ¢ K and by Player
II if ie K. The player choosing z; knows S, K and z,, ..., x;_,. Player 1
wins if (w,, ,,...)eS and Player II wins in the other case.

Let Vi;(K) denote the class of sets S = C for which Player II has
a winning strategy in the game I'(S, K).

Let M = (K, 5, :8=0,1;n=1,2,...) be a system of sets of
natural numbers such that K, s. and

c
8 8p 41

Ks, .0 10 Ksppsy_ 1 =0 forn=1,2,...

We put
Iy = ﬂ VII(Ksl,...,sn)9

where K, s, TUNS OvVer all the sets of the system M.

2. The following proposition follows directly from the definition
of I;:

PrOPOSITION 1. I, 8 lranslation invariant, i.e., for every Sely and
every xeC we have S+ xelyy.

ProposIiTION 2. (i) Iy, i8 hereditary, i.e., for every Sely and every
T = 8 we have T ely,.

(ii) No open mon-empty set belongs to I .

Proof. (i) is obvious from the definition of I,,.

(ii) Let V be an open set in C and let (z3, 27, ..., #3) be a sequence
such that (3, 2%, ..., @, Tny1y Tnysy...)eV for every x,,, = 0,1. Since
the sets K, . are disjoint and there are 2" such sets then one of them,
say ngwsg , i8 disjoint with the set {0,1,...,n}. Hence the game

I’(V,Kao ») is a win for I and (ii) follows.
I°e2%n

THEOREM 3. I is a countably additive ideal of sets (2).

Proof. Let S;eI;; for ¢ =1,2,... Then Player II has a winning
strategy ois,,..s, for each of the games I'(S;, K, .. ). Then he has

oo

a winning strategy in the game Iy = I'({JS;, K, o). Indeed, when-

Sm

ever he is making his j-th choice, where j EK.;" 0 and 8, = s,
S e

sn,sl,...,&‘:
=...=28_,=0 and s =1 let him play according to the strategy
.0 0 . Of course this is a winning strategy for I°,. Since the

1,31,...,Sn,81,...,8i

00
choice of s, ...,s) in I', was arbitrary we see that (J S;eI). Then by

1=1
Proposition 2 (i) we get the conclusion.

(3) Compare Theorem 2 in [9] and proposition (i) in [6], p. 209.
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THEOREM 4. If all the sets K,
all countable subsets of C (3).

Proof. By Theorem 3 it is enough to prove that I, contains all
singletons. Indeed, if II has at least one move he can avoid any given
point.

Let Sjs denote the set of all x = (x,, 2, ...)eC such that for every
,,,,, s, Of M there exists some ie¢K, _, With ; =0.

If all the sets K, are non-empty (and hence infinite), then S,
is of measure 1 and is an intersection of a countable collection of open
sets, all dense in C. Hence C\ 8, is of measure 0 and of the first category.
Still the following proposition holds:

PROPOSITION 5. Spreln (%).
Proof. Playing a game I'(8y, K,
always chooses 1.

,,,,, s, are non-empty, then I contains

s,) Player II will win if he

.....

3. Let I be an ideal of subsets of a topological space X. For every
8 = X we denote by 8® the set of all z¢X such that for every neighbor-
hood V of x we have V ~ S¢I.

The following properties of the operation S® are given by Kura-
towski in [3], §7, IV, V.
ProprosITION 6. (i) 8T is closed and is included in the closure of S;
(ii) 8 T implies S < TW;
(iii) (S(I))(l) c S(l);
(iv) if @ is open, then G ~ 8® = (G ~ 8)D;
(v) (q S,)®P < Q (8)® and U (8.)P = (U 8,)P, where A is any
set of indi;:as; “ " a'A
(vi) (S v T)D — 8@ _ W,
(vii) SONTD < (S\T)P;
(vili) ((S\T) w To)® = 8@ if T,, T,el.
We have also the following proposition:

ProPOSITION 7 (°). If X has a countable base of open sets and I is
countably additive, then

(i) S\SDeI;

(ii) 8P = 0 iff Sel;
(iii) ( S(l))(l) — S(”;
(iv) (8 ~ S(I))(I) = 8D,

(3) Compare Lemma 14 in [9].
(*) Compare Theorems 3 and 5 in [8].
(®) Compare [3], §10, V, 7, 8, 9, and § 18, IV, (8).
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Proof. (i) Every xS\ 8P has a neighborhood V, such that V, ~ Sel.
There exists a countable sequence of open sets V,, V,,... such that for
every ¢ there exists an « with V;= V, and UV;= (V.. Hence

SN8D <= | J(V; A 8)el.
i=1

(ii) If 8P = 0, then S = S\ 8P eI by (i). The converse implication
is obvious.

(iii) By 6(vii) and 7(i), (ii) we have SO\ (SD)D c (S\SD)D — o,
ie., SO < (SP)D, The converse inclusion is 6 (iii).

(iv) 8 = (8\8P) L (8 ~ 8M), hence relation (iv) follows from 6 (vi)
and 7(i).

Remark. If X is compact, then 7 (ii) holds without assuming the
suppositions of 7. In fact, if S¥ = 0, then every z <X has a neighborhood V,
such that V, ~ SeI. X is a finite union of some sets V, and 8 is a union
of the corresponding sets V,~ S. Hence SeI, because I is additive.
The converse implication is obvious.

We put SU! = 8§ u 8@,

ProrosSITION 8 (°). If X has a countable base and I is countadbly addi-
tive and contains all singletons, then

(i) SW 4s a topological closure operation, i.e., (S v T)H = Sl T
( S[I])lll — S[’], {m}m — {w} and 01 — 0;

(ii) the topology T defined by this operation includes the original
topology of X;

(iii) the Borel sets of the topology T are of the form (B\8,) v 8,, where B
i8 Borel in the original topology and S,, S,el.

Proof. (i) By 6(vi) and 7 (iii).

(ii) By 6 (i) if 8 is closed in X, then 81 = §, i.e., § is closed in T.

(iii) The class of sets of the required form (B\S§,) v 8, is closed
under complementation and countable union. Hence it remains to show
that all closed sets of T are of this form. Indeed, S = 8P L (S\8D),
where S is closed in X by 6 (i) and S\8®P I by 7 (i).

"4. Now we come back to our space ¢ and ideals I,.

THEOREM 9. If S¢Iy and SeF,, o Gy, then there exists a closed
set F < 8 such that F¢I,,.

Proof. If S¢I,, then Player II has no winning strategy in one
of the games I'(S, K, .. . ). Then, since SeF, v G,,, by a theorem
of Davis [1] Player I has a winning strategy o. Let F be the set of all
zeC which may result when I uses o. Clearly, F satisfies the conclusion.

(®) Compare [6], footnote (8).
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ProOBLEM 1. It is not known if Theorem 9 and the theorem of M. Dayvis
on which it is based can be extended. to all Borel sets ('). (P 646)

THEOREM 10. For every set Sely there exists a set AeG, such that
Sc Aely.

Proof. Sely iff IT has a winning strategy o, , for each game
I'eS, K, s,). Let Fy ., be the set of all plays which may result
when IT uses o5, s, . Put A = O\ U F, s and the conclusion follows.

ProOBLEM 2. Does there exist for every set Z < C a Borel set B2 Z
such that for every Borel set B, = Z we have B\ B,eIy? (P 647)

By a general theorem of Marczewski [4] (see also [3], §11, VII)
and our 8 (iii) an affirmative answer to this problem would imply that
the class of sets of the form (B\ 8,) v 8,, where B is Borel and S,, S,eI,,
is invariant under the operation (.27). Notice the well known facts that
if we substitute I,; by the ideal of sets of measure 0 or the ideal of sets
of the first category, then the answer is yes.

Theorems 9 and 10 point out similarities between I, measure 0
and first category. The next propositions show dissimilarities.

By the definition of M the sets K, and K, are disjoint and hence
the complement of one of them, say of K,, is infinite. Let ¢ be any stra-
tegy of Player I in a game I'(8, K,) and F be ithe set of all xeC which
may result when I uses ¢. Hence F is closed and ¥+ x ¢ I, for every xzeC.

Let D be the set of all zeC with ; = 0 for all 1¢K,. Hence D is
a perfect set and hence has the power 2%, From these definitions imme-
diately follows ’

ProrosiTION 11. (F+ o) ~ (F+a2,) = 0 for all x,, x,eD, x, # x,.
Thus there exists 2% disjoint closed sets none of which is in I,,.

Let E be the set of all xeC for which there exists some n such that
z; = 0 for all + > n.

PROPOSITION 12. ON\(F+ E) ¢1y.

Proof. Since Player I has infinitely many moves in the game
I'(C\(F+E), K,), he can avoid one by one all the sets F+ x, where x
runs, over the countable set E. Hence this game is a win for I and our
proposition follows.

Since F+ x ¢I,, proposition 12 shows that the 01-law fails to hold
true for the ideal I;.

Let F, be the set of all zeC such that z; = 0 for all 1¢K,, i.e., F, is
the set of all x which may result in a game I'(S, K,) when Player I uses
the strategy to choose always 0. Then we obviously have

.....

(") A recent not yet published result of Anthony Martin is that assuming the
existence of Ol-measurable cardinals both results are valid for all sets which are
analytic or a complement of analytic.
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ProPOSITION 13. Fy+ Fy = Fy—F, = Fo¢Iy.

This shows that the theorem of Steinhaus, which says that for every
set /' which is measurable and of positive measure or has the property
of Baire and is not of the first category #— F contains an open set,
fails to hold for the ideal I,; (because F', is nowhere dense).

ProBLEM 3. Let Sel,;. Does there exist a perfect set P = C such
that z—y ¢S for every z,yeP, x # y? (P 648)

For the ideals of sets of measure 0 or of the first category the answers
are affirmative (see [7] and [8]). If I is one of these ideals, then the class
of sets of the form (B\ S§,) v 8§, considered in Proposition 8 (ii) coincides
with the class of measurable sets or sets having the property of Baire,
respectively. We know that there are sets in ¢ which are not measurable
and do not have the property of Baire.

ProBLEM 4. Does this class differ from the class of all subsets of (
also in the case when I = I, ? (P 649)

There exists a maximal filter of closed subsets of the real line R
which, moreover, does not contain any set of finite measure (any maximal
extension of the filter of all closed subsets of R which have complements
of finite measure is such a filter) or does not contain any nowhere dense
set (this was proved on account of the continuum hypothesis by Fine
and Gillman [2]).

ProBLEM 5. Does there exist a maximal filter of closed subsets of C
which, moreover, is disjoint with I;? (P 650)
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