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0. Introduction. In papers [2] and [3] (see also [4]), Alfred Rényi
presented a new approach to probability theory, based on a concept of
conditional probability. The conditional probability is defined there as a
function P: «of x # — [0, 1], where &/ is a g-algebra of subsets of a given set
(space of random events) and 4 is a non-empty subfamily of </ (space of
conditions), which is assumed to be a probability measure on .« for every
Be % and to satisfy a natural condition of compatibility of the family of
these measures.

This approach makes thus a generalization of the classical Kolmogorov
approach. Moreover, Rényi’s theory can be applied in various branches of
mathematics and physics when Kolmogorov’s approach fails or leads to
complications (cf. [3]). In all such situations, calculations lead to unbounded
measures of probability (in particular, to the uniform distribution on the
whole real line), which do not make sense in the classical probability theory
but can be defined in Rényi’s approach (see [4], p. 245-254).

The aim of this paper, which can be treated as an expansion of some
ideas and results of [3], is to discuss various types of extensions of Rényi’s
conditional probability spaces. More precisely, given a o-algebra o/ of
random events and a space # of conditions, we shall be interested in
extending the family # by joining to it elements of &/ and in defining
conditional probability P(A|B) for Ae.«/ and for B belonging to the
extension of 4. '

The following three types of extensions will be considered by adding to
A, respectively: 1° subsets of sets belonging to %, 2° intersections of
decreasing sequences in %, 3° unions of increasing sequences in %, under
some necessary restrictions on sets which are to be joined to 4, resulting
from properties of Rényi spaces.

We shall consider extensions of # by an arbitrary family of elements of
o/ of a given type (with the restrictions mentioned above). In Sections 3-5,
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we give characterizations of Rényi spaces admitting such extensions. In
particular, we obtain characterizations of extensions by one fixed element of
</ and of the maximal extensions by all possible elements of </ of a given
type.

The one-element extensions of types 1° and 3° are considered in [3].
However, the proof of the respective theorem for the extension 3° is not cor-
rect. We provide a new proof of this result (cf. Theorem 5.1 and Corol-
lary 5.1).

In the case of the maximal extensions 1°-3°, we shall also give (in
Sections 3-5) sufficient conditions for a given operation of extension to be
idempotent.

It is interesting that the equivalent conditions IV’ and IV{?, considered
in [1] for different reasons, guarantee the feasibility of all the types of
extensions as well as the idempotency of the maximal extension of type 1°.
The maximal extensions 2° and 3° are idempotent under additional con-
ditions, but in general only the w,-th iterations of extensions 2° and 3° lead to
spaces of conditions closed on taking limits of decreasing (increasing) sequences
of sets. It is worth noting that condition IV{?, the weakest among conditions
considered in [1], is not sufficient for any of the extensions 1°-3° to be feasible.

Note that if we perform the maximal extensions 1° and 3°, the second
one w, times, then the obtained space of conditions is closed with respect to
all the operations 1°-3°, so this property of the space of conditions can be
postulated in a given Rényi space in case of need (see [5] and [6]).

1. Axioms and their consequences. In the sequel, the set of all positive
integers will be denoted by N.

By a Rényi space we mean a system # = [Q, </, #, P], where Q is an
arbitrary set (space of elementary events), o/ is a a-algebra of subsets of Q
(space of random events), -3 is a non-empty subfamily of .o/ (space of conditions),
and P is a non-negative function on .o/ x # (conditional probability) such that

(I) P(B|B) =1 for every Be #;
(I) P(U A;|B)= ) P(A;|B) for any disjoint sets A;e o/ (ieN) and
i=1 i=1

every Be 4;
(II) if Ae o/, B, Be#®, B< B, and P(B|B) > 0, then

P(ANB|B)
P(A|B)=———77—
(AI1B) = =55
(see [3], p- 289, 296; [4], p. 70).

Let X =[Q, o/, Py] be a Kolmogorov space (i.., 2 is a given set, </ is
a g-algebra of its subsets, and P, is a probability measure on .27). The system
R=[Q, 7, B, P, where # is the family of all sets Be.«/ such that
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Po(B) >0 and P(A|B) = Py(A n B)/P,(B) for Aec o/ and Be %, is a Rényi
space.

One can easily check the following .

THEOREM 1.1 (cf. [1], p. 338-339). Let # =[R2, o, #, P] fulfil axioms (I)
and (II). Then axiom (II1) is equivalent to the following two conditions:

(I11,) P(A|B)=P(ANB|B) for A=, Be®

and
(II1,) P(A|B)-P(B|B)=P(A|B) if AcBcB (Ac«/; B, B'c%).

Some results of this paper can be formulated for systems satisfying (I),
(II), (I11,), more general than Rényi spaces, but this will not be marked in the
paper.

In the sequel, the letters A and B with possible indices will always
denote elements of the families o/ and %, respectively, in a given Rényi
space # = [Q, ./, @, P]. For two Rényi spaces # = [Q, o+, B, P] and #
=[R, of, #, P, we shall write # < # if #< % and P=P on o x# and
R=Rif =% and P=P.

The following properties of Rényi spaces are evident:

THeoREM 1.2 (cf. [3], p. 290-291; [4], p. 71). Let # =[Q, o/, B, P] be
a Rényi space. Then

(1.1) P(@|B) =0,

(1.2) P(Q|B) =1,

(1.3) P(A|B) <1,

(1.4) P(A|B)=0 if AnB=0Q,
(1.5) P(A|B)<S P(A'|B) if Ac A,
(1.6) P(A|B)< P(A|B) if Ac BB,
(1.7) O¢ R

for arbitrary elements of o/ and R, respectively.

By (II), (1.1), (1.2) and (III), (III,), we have

THeoreM 1.3 (cf. [3], p. 289-290; [4], p. 71). Let #=[Q, o, 8, P]
be a Rényi space and let Py(A)= P(A|B,) for fixed Byoe 2. Then
X =[Q, o, Py] is a Kolmogorov space. Now, if Be B, Po(B) >0, and
BN Bye®, then letting P(A|B)= Py(AB)/Py(B) we have P(A|B)
= P(A| B N By).

Note that there exist Rényi spaces which are not Kolmogorov ones
(see [3], p. 304-310; [4], p. 72-73).

THEOREM 1.4 (cf. [3], p. 291). Let # =[R2, </, #, P] be a Rényi space
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and let A, A*’c o/ and B', B>c %. If

(1.8) A', A2 < B'nB?

and

1.9) B'nB*e %,

then

(1.10) P(A'|B')-P(A?|B% = P(A%|B')-P(A'| BY.
If (1.8) and (1.9) hold and

(1.11) P(A%|B')-P(A%|B? >0,

then

P(A'|B') P(A'|BY)
P(A%|B') ~ P(A4*|BY)’

(1.12)

In connection with (1.11), consider the inequalities
(1.13) P(A'|BY)-P(A'|B% >0,
(1.14) P(B'|B%»-P(B?*|B') > 0.

THEOREM 1.5. In an arbitrary Rényi space, the following conditions are
equivalent:

(i) (1.8) A (1.11) =(1.12);

(ii) (1.8) A [(1.11) v (1.13)] =(1.10);
(iii) (1.8) A (1.14) = (1.10);
(iv) (1.8) =(1.10).

Proof. The implications (iv) = (iii) and (ii) = (i) are obvious.

To show that (iii) = (ii), suppose (1.8) and, for instance, (1.11) hold true.
But then, in view of (1.5) and (III,), we have (1.14), so (1.10) follows by (iii).

Finally, in order to prove (i) =(iv), assume (1.8) holds true.

If P(B'|B*)=0, then P(A'|B%)=P(4%|B®) =0 by (1.8), (1.5),
and (III;). Consequently, (1.10) holds. Similar arguments work in case
P(B*|BY) = 0.

Therefore, we can assume (1.14) holds. Putting A2 = B! n B2 in (1.11), we
get just (1.14), and thus (i) yields (1.12) for 4% = B' n B2, Hence the
equivalence

(1.15) P(A|B)=0<P(A|B}) =0
holds for A = B' n B2. But (1.15) and (i) imply (1.10), as desired.
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Let us denote by (IV) the simplest from among conditions (i){iv) and let
us treat it as an additional axiom:

(IV) P(A'|B')- P(A?|B?) = P(A%|B')-P(A'|B? for A', A’c o and
B!, B*e # such that A!, A> < B! ~n B2

Remark 1.1. Condition (IV), stronger than the implication
(1.8) A (1.9) A (1.11) =(1.12) in Theorem 1.4, does not hold in Rényi spaces
in general (see Example 3.1). In the form (i), this condition is adopted as an
additional axiom in [3] (p. 301). The equivalence of (iii) and (iv) is shown in
[1] (p. 354), where those conditions, denoted by IV{? and IV, are discussed
in connection with problems of representations of Rényi spaces by families of
‘measures. Among various conditions considered in [1] (see p. 354), the only
weaker than IV and IV is the following one:

IV®. P(A'|B')-P(A%|B?) = P(A%|B')-P(A'|B? for A' A’ec & and
B!, B*c .4, A', A* = B'~ B? provided all the factors are positive.

By (1.7), it is impossible to desire B' nB2e.# to hold for every
B'. B*c :4. However, the following condition seems to be quite natural:

.(IV') If B!, B*c.# and P(B'|B?+ P(B?|B') >0, then B' nB%*c 4.

CoroLLARY 1.1. In every Rénvi space, (IV') implies (IV).

Proof. Suppose that (IV’) holds and let A', A%c ./, B!, B*c 3,
A' U A% = B' nB? and P(B'|B?):- P(B?*|B') > 0. The last inequality implies
P(B'|B?*)+P(B*|B') >0, so B! nB?c 4 in view of (IV'). By Theorem 14,
we derive (1.10), i.e., the implication (IV’) = (iii) is shown. This completes the
proof, because (iii)<>(IV) by Theorem 1.5.

The implication (IV)=(IV’) is not true (see Example 4.3).

2. Continuity of conditional probability. Let % = [Q, ./, %, P] be a fixed
Rényi space.

Since P(:|B) is a probability measure on ./ for each fixed Be 4, we
have

(2.1) lim P(A4;|B) = P(A|B)

i—~a

for Be # and for each monotone (increasing or decreasing) sequence {4},
A;e <7, with the limit (union or intersection, respectively) equal to A.
The continuity of P with respect to the second variable is- considered in
[3] (p. 302-303), but the cases of increasing and decreasing sequences are
formulated asymmetrically and, in the second case, in a somewhat com-
plicated form (cf. Corollaries 2.1 and 2.2).
We give a more general and symmetric formulation:

THeorem 2.1. Let {A;] and |B;} be increasing (decreasing) sequences of
elements of <7 and 4, respectively, and let A and B be their limits, respectively.

9 — Colloquium Mathematicum XLIX.2
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Suppose that Be # and, in case of decreasing {B;}, assume additionally that
(2.2) P(B|B;) >0

for some ioe N. Then

(23) lim lim P(4;|B;)) = lim lim P(4;|B))

i—w joow j—ow i—w

= lim P(4;|B;) = lim P(4;| B) = P(A|B).

i,j—* i—a

Proof. First of all notice that (2.1) implies
(24) lim lim P(4; n 4;| B) = lim lim P(4; n 4;| B)

i—*a j—a j—ow i+
= lim P(4; nA4;|B) = lim P(4; n 4;|B) = P(An A|B)
i,j— o i—a
for Be # and arbitrary increasing (decreasing) sequences {A;} and {4;} of
elements of =/ with limits 4 and A, respectively.

By (I), (2.1), and (2.2), we have 1° P(B,|B) > 0 (with B = |) B, if the
i=1

sequence B} is increasing, and 2°P(B;|B;)) >0 if {B;} is de(;reasing for
sufficiently large j.
By (III), in cases 1° and 2° we have

pa By =PACBIB) y p By < DA BBy

P(B;| B) Y P(B;|B,)

respectively, and thus (2.3) follows by (2.4).

CoroLLARY 2.1 (cf. [3], p. 302). Let Ae «/ and let |B;} be a monotone
sequence in 4 such that its limit B is also in 4. Suppose additionally (2.2) holds
for some ioe N in case of decreasing |B;}. Then

(2.5) lim P(4|B) = P(4|B).

i—

Proof. It suffices to put 4, = A in Theorem 1.1.

CoROLLARY 2.2 (see [3], p. 302). Let Ae </, B, o B;,, (ieN), ﬂ B; = B,

and let Be B be a set such that BN B and B, B are in d?for IEN If
P(B|B) > 0, then

lim P(A|B; ~ B) = P(4| B~ B).

i—a

Proof. The sets B;=B,nB and B=B~ B are in # and satisfy the
assumptions of Corollary 2.1, because

P(B|B)> P(BnB|B)=P(B|B)>0
for each ie N in view of (1.6) and (III,). Thus the assertion follows by (2.5).
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Remark 2.1. For increasing sequences {B;}, B;c #, with B = |) B;e A,
we have i=1

(2.6) P(B;,|B) = 1_[ P(B;|B;+1) >0

i=ig
for sufficiently large ioe N. That means the condition P(B; |B) >0 or, in
other words, the condition

(2.7 1-[ P(B;|B;+,) >0
i=ig
is necessary for (2.5), and the more so for (2.3), to hold.
In fact, by induction, (III,) yields

n—-1
P(B;|B,) = [] P(B;|B;,,)
i=k
for every k, ne N and, letting n — o0, by (2.5) we get
P(By|B) =[] P(B;|Bi+,)-
i=k

Hence (2.6) follows by (2.1) and (I).
In a similar way, one can show for decreasing sequences {B;}, B;c 4,
with B = () B;e # that (2.2) is equivalent to the condition
i=1

(2.8) I1 P(Bi.1iB) > 0.
l=lo

Note that condition (2.6) is necessary for increasing sequences to satisfy
identity (2.1) and the equivalent conditions (2.2) and (2.8) are necessary for
decreasing sequences to fulfil (2.5). In fact, suppose, on the contrary, that
P(B;| B) =0 (or P(B|B;) =0) for all iec N if |B;} is an increasing (decreasing)
sequence. Then (2.1) (or (2.5), respectively) results in P(B|B) =0, which
contradicts (I).

There is, however, an essential difference between the two cases.
Condition (2.6) for increasing sequences is always valid, while conditions (2.2)
and (2.8) need not be satisfied. On the other hand, conditions (2.2) and (2.8)
cannot be omitted in Theorem 2.1 and Corollary 2.1 as the following
example shows:

Example 2.1. Let Q =(0, 1), «7 be the family of all Borel subsets of
(0, 1), and # consist of the sets B=(0, 1/2] and B; =(0, 1/2+1/2i) for
ie N. We define

|A N BJ and P(AIB,-)='AnBin(Q\B)I

P(A|B) = B |B; " (Q\B)|
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for Ae o/ and ieN. Axioms (I){IV) and (IV’) are satisfied in the space
R=[Q, o4, B, P

We have B; o B;.,, ﬂ B, =B, and B, B;e # (ieN), but P(B|B) =0
for all ie N. i=

3. Subsets. In a given Rényi space, we are going to study extensions of the
famlly 4 of conditions by joining to it some random events belonging to the o-
algebra .o/. Let us start from considering subsets of the sets belonging to 4.

THEOREM 3.1. Let # =[R2, of, B, P] be a Rényi space and fix B, e o.
Assume that there exists B'e 4 such that

3.1) B,cB' and P(B,|BY)>0

and the following condition is satisfied:
(o) For every B*ec # such that B> > B,, P(B,|B%) > 0 and for arbitrary
Al A%’e o such that A, A®> c B, identity (1.10) holds.
Then the system R, =[Q, o, B,, P,), where B, = B0 {B,}, P,=P on
o x B, and
1
(32 P(A|By=A0E12)

P(B,|B")

is a Rényi space and definition (3.2) is consistent, i.e., does not depend on the
choice of a set B! satisfying (3.1).

Proof (cf. [3], p. 297-298). It is easy to see from the definition of P,
that &, satisfies axioms (I), (II), and axiom (III) in the cases B = B' = B, and
Be4%, B =B, (ie, B<B,, P,(B|B,) > 0).

It remains to consider the case B=B,, Be# (ie, B,cB,
P(B,| B’) > 0). But then we have AnB, = B, = B' n B’ for every Ac & and
condition (o) yields

(Ae ),

P(A N B,|BY) _P(AnB,|B)
P(B,|B') ~ P(B,|B) °
It suffices now to use the definition of P, in (3.3).

Condition (o) guarantees also the consistency of definition (3.2).

CoroLLARyY 3.1 (see [3], Theorem 10). Let # = [Q, o/, B, P] be a Rényi
space with a fixed B, € o/ . Suppose that there‘exists B € # satisfying (3.1) and
the following condition is fulfilled:

() B' nB*e # for each B*e B such that B, = B> and P(B,|B? > 0.

Then R, defined in Theorem 3.1 is a Rényi space and definition (3.2) is
consistent.

Proof. Since, by Theorem 1.4, condition (o) implies (a), the assertion
follows from Theorem 3.1.

(3.3)
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Remark 3.1. In the case B,e &, the statements of Theorem 3.1 and
Corollary 3.1 follow immediately by (III).

Given a Rényi space # = [Q, o/, B, P], we denote in the sequel by #,
=[R2, o, #,, P.] a fixed system, where .4, is an arbitrary family of sets
B,e of for which there exist sets B'e @ satisfying (3.1) and P,(A|B,) is
defined by formula (3.2) for Ae o and B,e #,. In particular, if the
extended family of conditions 4, contains all sets B, as above, the
respective system will be denoted by #° =[Q, «, #°, P°].

Now, consider condition () for all B,e #, and denote it by (a.):

(a,) For every B,e#, and B', B*c # such that B!, B> B, and
P(B,|B) > 0(i = 1, 2) and for every A*, A*>c of such that A, A*> c B, identity
(1.10) holds.

Remark 3.2. In the case %, = #°, the above condition turns into
condition (IV). In fact, suppose that B', B¢ # and P(B'|B?- P(B?|B') > 0.
By (III,) we have P(B'nB?|B) >0 (i=1, 2), so B! nB?*e #°. Thus con-
dition (o) (for #, = #°) yields (1.10). This means that condition (iii) from
Section 1 holds. But (iii), in view of Theorem 1.5, is equivalent to (IV), so
condition (o) for #, = #° implies (IV). The converse implication is obvious.

THEOREM 3.2. Let & be a Rényi space. The system &, is a Rényi space iff
AR satisfies condition (o). In particular, X#° is a Rényi space iff R satisfies (IV).
If R fulfils (IV), then #° also fulfils (IV) and, moreover,

(3.4 R R, H
and
(3.5) R° = K.

Proof. Suppose that # satisfies (o) and let B, and B, be two arbitrary
elements of #,. By Theorem 3.1, the extended system %' =[Q, &/, #, P'],
where #' = AU {B.}, PP=P on & x %, and

P(ANB.,|B)
P(B;| B')

for some B'e # such that B, = B’ and P(B,|B’) > 0.

Note that condition (o) is satisfied for the system 4. In fact, if
A', A’c o/, B', B>’e #, and A' n A?> = B, < B' n B?, then (1.10) holds in
view of condition (o) assumed for #. The case where one of the sets B!, B2
or both of them coincide with B, reduces to the previous one, according to the
definition of P

Therefore, we can apply again Theorem 3.1, now for the system %4'. As a
consequence, axioms (I){III) are satisfied for arbitrary elements of </ and
# U {B,, B}, respectively.

P'(A|B) =
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Since B, and B, were chosen arbitrarily in 4,, we have proved that %,
is a Rényi space.

Suppose now that #, is a Rényi space and let B, e #,; B!, B’e #;
B!, B2> B, P(B,|B)>0 (i =1, 2). Since (III) holds for #°, we have

P(4|B') _ _ P41B?
p, By ~ 1B = o

for every set Ae o/, A = B,. Hence (1.10) holds for 4!, A% ./ such that
A!, A c B,. This means that condition (x,) holds and the first part of the
theorem is proved.

The statement in the case #, = #° follows according to Remark 3.2.

Now, assume that the Rényi space # satisfies axiom (IV) and let
B!, B’e 4, ie., B. c B'e 4 and P(B.| B') > 0 (i = 1, 2). By the definition of P°
and by (IV), assumed for %, we have
P(A'|B")-P(A%|B?
P(B!|B")- P(BZ| B?
_ P(A%|B')-P(A'|B?)
~ P(B}|B")-P(BZ| B

P°(4']B))- P°(A*|BY) =

= P°(4%| B;)- P°(4'| B)

for A', A’c o/, A}, A*> = B! B2, ie, & fulfils (IV).

Relation (3.4) is guaranteed by axiom (III), assumed for .

Since for two arbitrary Rényi spaces #, and #, the relation #, c &,
implies # < %5, (3.4) yields #° = #*.

Assume now that B, e 4, i.e., there exist sets B, and B from #° and
A, respectively, such that B, cB,< B and P°(B,|B) >0, P(B,|B)> 0.
Moreover,

P(AnB,|B)

P(41B) =—5 o

for every Ae .o/, and hence
P(B,|B) = PAB,|B,) P(B,| B) > 0,

ie, B,,e#°, and the inclusion #*° < #4° is proved.

Consequently, #° =% and P°P=P° on o x%# = x B since
A < X, so (3.5) holds and the proof is complete.

As a consequence of Theorem 3.2 and Corollary 1.1, we get

THEOREM 3.3. If a Rényi space R satisfies condition (IV’), then R, and H°
are Rényi spaces and #° satisfies (IV') and (3.5).

Proof. We need only to prove that #° fulfils (IV’).

Let B', B2c #° and suppose, for instance, that P°(B'|B?) > 0. Then
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there is a set Be # such that B> < B, P(B%|B) > 0, and

P(B! N B?|B)
P(B?| B)

P°(B!| B =

Hence P(B' nB?|B) >0, and this yields B! n B*c #°, as desired.

The following example shows that conditions (a), (), (o), (IV), and (IV’)
in Theorems 3.1, 3.2, 3.3 and Corollary 3.1, respectively, are essential and
that condition IV{? is not sufficient for #° to be a Rényi space.

Example 3.1. Let Q=1{1,2,3,4), o4 =2% 42 =/{B' B?), where
B'=!1,2, 3, B>=12,3, 4}, and let P(A|B)=6;,,(4) (i=1,2; Ae ),
where 6, is a probability measure concentrated at the point c¢. Clearly, #
=[Q, .«/, B, P] is a Rényi space and IV{? holds. But

1 = P(A'| B')- P(A%| B?) # P(A?|B")-P(4'|B%) =0

for A' = {2}, A* = {2, 3}, i.e, (IV) does not hold. Putting B, = {2, 3}, we see
that conditions (a), (o), (o,) and (IV’) for 8, = # U {B,} and 4 consisting of all
Ae o/ such that A~ {2, 3) =@ are not fulfilled either.

Defining P, = P° =P on &/ x 4% and

P(ANB,|BY)
P(B,| B")

P,(4|B,) =P (A|B) = (Ae ),

we have

P,(ANB,|B) P°(ANB,|BY)
P,(B,|BY) = P°(B,|BY

P,(A|B) = P°(A|B)) #

for A={2} or A={3}, ie, #, =[Q, o, B,, P,] and & =[Q, o, ¥, P°]
are not Rényi spaces.

4. Intersections. Next, we shall extend a given Rényi space adding to

the family of conditions # intersections B, = () B; of decreasing sequences
i=1

{B;}, B;e #, and defining a conditional probability for the extended space
of conditions by formula (2.5). This kind of extensions was not considered
in [3].

Since from Remark 2.1 it follows that condition (2.8) is necessary for
such extensions, we assume in this section that decreasing sequences {B;},
B;e &, satisfy the condition

@) I1 P(Bios1B) > 0.
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THEOREM 4.1. Let X =[R2, o/, B, P] be a Rényi space and let
i=1

for a fixed decreasing sequence {B;\. B;e 4, satisfying (4.1). Suppose that
(B) for each Be #, B > B, and for each ie N identity (1.10) holds with
A', A>c B, and B' = B, B*> = B,.
Then the system A, =[R2, </, #A,, P,], where 4, = 40 \B,,, P,(A|B)
= P(A|B) for Ae </, Be #, and
4.3) P,(A|B,) = lim P(4|B) (Ae./),
is a Rényi space. Moreover, definition (4.3) is consistent, i.e. does not depend on
the choice of a decreasing sequence {B;), B;€ B, satisfying (4.1) and (4.2).
Proof. Since (II1,) yields

n—1

P(B,|B) = [| P(B;+1|B) for n>k,
i=k

condition (4.1) implies P(B;|B;) >0 for all i, je N and, by (2.1), we have
P(B|B;) > 0 for ie N. Thus (III) yields

P(ANB,|B) o
P(A|B)=———21— forj>i
! P(B;| B))
and, letting j — oo, we get
P(ANB,|B;
(4.4 P(41B) =1 5 I;BI-) ) for ieN.

The latter formula allows us to check easily that #, fulfils axioms (I),
(IN), and (III) in the cases B= B =B, and Be#, B’ = B,. It remains to
show that
P(ANB,|B)

P(B,|B)
for every Be # such that P(B,|B) > 0. But, by (4.4), it suffices to use (p) for
A' = AnB, and A*? =B,.

Now, let {B;}, B;e #, be another decreasing sequence satisfying (4.1) and

(4.2). Since B, = B, and, by (4.1), P(B,| B,) > 0, we have

P(AnB,|B,) o P(AnB;|B,) o ~
PBIB) —Im-—pEp, = lmP(4]|B)

by (III) and (2.1). The consistency of definition (4.3) is thus proved.

Remark 4.1. In the case where B, € 4, the above statements are evident
by Theorem 2.1.

P,(A|B,) =

P,(A|B,) =
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Given a Rényi space # = [Q, </, A, P], fix now an arbitrary family 4,
of sets B, of the form (4.2), where {B;}, B;e.4, is a decreasing sequence
satisfying (4.1), and define P,(A|B,) for all Ae o and B,e 4, by (4.3). In the
sequel, we apply the notation A, =[Q, .</, #,, P,] for that fixed system.

In particular, if 4, consists of all sets B, defined above, we denote the
respective system by #° =[Q, </, 4, P*].

Now, the following analogues of condition (B) will be considered:

(B,) For each B, € 4,. for each Be A. B > B,. and for each i€ N identity
(1.10) holds with A', A* < B, and B' = B, B* = B;, where {B;}, Bic %, is a
decreasing sequence satisfving (4.1) and (4.2).

(B*) For each B, of the form (4.2), for each Be #, B > B,, and for each
ie N identity (1.10) holds with A!, A> c B, and B' = B, B> = B;, where {B,),
B;e #, is a decreasing sequence satisfying (4.1) and (4.2).

THEOREM 4.2. Let # be a Rényi space. The system A, is a Rényi space iff
A satisfies condition (B,). In particular, #* is a Rényi space iff # satisfies (B*).
Moreover,

4.5 R A, H <A

Proof. Suppose that -# fulfils condition (B,) and let B, and B, be two
arbitrary elements of 4,. By Theorem 4.1, the system # =[Q, ./, #, P],
where 4" = AU {B,| and P’ is defined as in Theorem 4.1, is a Rényi space. It
is easy to see that the system 4’ also satisfies condition (B), so we can apply
Theorem 4.1 once more. Consequently, the system extended by adding the
sets B, and B, to the family # is a Rényi space. so axioms (I){III) hold for
arbitrary elements of #u {B,, B,}. Since B, and B, were chosen arbitrarily,
this means that #, is a Rényi space.

Assume now that #, is a Rényi space. Let B,e #, and (B,}, B,c #, be a
decreasing sequence satisfying (4.1) and (4.2). Moreover, let Be #, B o B,
and A', A%e./, A!, A*> c B,.

If P(B,|B) >0, then

P(4’|B) _P(4'|B)

(4.6) P 41B) = 55,78 = PB.IB)

for every ie N and j =1, 2, by axiom (III) assumed for gﬁ’, Hence
4.7 P(A'|B)-P(4%|B)

= P(B,|B)- P(B,|B;)-P,(A'|B,) P,(A*| B,) = P(A%| B)- P(A'| B)
for each ie N.
If P(B,|B) = 0, then, by (1.5), P(4/| B)=0(j = 1, 2), so (4.7) holds also in
this case.

We have thus proved that # fulfils condition (B,) and the first part of
the theorem as well as the statement concerning #* are proved.
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The inclusions # = #, < #* are obvious. By (4.1), it is clear that #* < #°
(see Remark 2.1). It remains to use formula (4.4) to see that P* = P° on o/ x #°,
so (4.5) is shown and the proof is completed.

Remark 4.2. It follows from the proofs of Theorems 4.1 and 4.2 that
conditions a little weaker than (B,) and (B°) are sufficient for the proof that the
systems %, and %#°, respectively, are Rényi spaces. Namely, the quantifier “for
each ie N” in these conditions can be replaced by the quantifier “for some
ie N”. On the other hand, if %, or #° is a Rényi space, then the Rényi space #
satisfies (B,) or (p*), respectively, in the form given above, i.e, for each ie N.

It is also interesting that, in conditions (B), (B,), (B*), for a given B,only
one fixed sequence {B;}, B;e 4, satisfying (4.1) and (4.2), is assumed to fulfil
the respective assertion. One can easily derive from the proof of Theorem 4.2
that this assumption already implies the respective assertion for all such
sequences |B;}.

THEOREM 4.3. If a Rényi space R satisfies (1V), then #° is also a Rényi
space satisfying (IV) and

(4.8) R R <R

Proof. Since (IV) implies (B°), it suffices to show that (IV) holds in #°,
according to Theorem 4.2. But identity (1.10) assumed in condition (B°)
implies

P(A'|B,)-P(A*|B) = P(A?| B,): P(A'|B)
for arbitrary Be %, B,e #°, and A', A?e.o/ such that A!, A2 BnB,,
which yields (IV) in 2.

THEOREM 4.4. If a Rényi space R fulfils condition (IV'), then &* is a Rényi
space, satisfying (IV’), (4.8), and
4.9) R = R

Proof. By Theorem 4.3, #° is a Rényi space fulfilling (4.8). It is not
difficult to check that #* fulfils (IV’) (cf. the proof of Theorem 5.5), so it
remains to show (4.9).

To prove the inclusion

(4.10) B < B,

suppose that B* e #*, ie, B*® = () B}, where
i=1

(411) BreB, B> B}, for ieN and [] P*(B}+|B})>0.
j=1

Further, we have

B; = N\ Byx (ieN),
k=1
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where

J

4.12) Bye#, By> B+, and P(B;|B;j+1) >0
=1

for i, keN.
By (4.11) and (4.12), we have
(4.13) P°(B*|B})>0 and P(B}|B,)>0
for i, ke N.
We shall show, by induction, that
4.149) B,c#

for i, ke N, where
Bu = ﬂ Bjk-
j=1

Let k be fixed. It is obvious that (4.14) holds for i = 1.
Suppose that (4.14) holds for some ie N. Since B} = Bj = By for j <,
we have B! < B, c B;, and thus

(4.15) P(B}|By) > P(B;| By) >0
by (1.6) and (4.13). Further, we have
P(Bis 1| By) = P(B}+ .| By) = P*(B, | B})- P(B}| By) > 0
in view of (1.5), (III,), (4.13), and (4.15). Now, axiom (IV’) yields
By B, €A,

which completes the proof of (4.14).
Let B, = B,, for ke N. Clearly,

(4.16) B,e# and B, o8B,
for ke N, as a consequence of (4.12) and (4.14).
It is easy to see that

4.17) N B = N B =B

and, moreover,
(4.18) P(B*|B,) = P(B*|B,) = P*(B*|B})- P(B}| B,) > 0

by (1.6), (III,), and (4.13).

Relations (4.16){4.18) imply B** € #° (cf. Remark 2.1), and thus inclusion
(4.10) is proved.

Hence (4.9) follows by (4.5).
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Now, we are going to give an example that the assumptions (B) in
Theorem 4.1, (B,) and (B°*) in Theorem 4.2, (IV) in Theorem 4.3 and (IV’) in
Theorem 4.4 cannot be omitted and, what is more, that condition (IV)
cannot be replaced in Theorem 4.2 by condition IV{? (see [1] or Section 1).

Example 4.1. Let Q=[0, 1] and let .« be the family of all Borel
subsets of Q. Putting x =1/3, y=2/3,z=1 and x, =1/3—1/3" for ne N, we
define

=3x, ¥z}, By=1{x, % X k= nj,

#=B,B,. neN}, B,= () B;=!x,y}.
i=1
Moreover, let P(A|B) = J,(A) and
P(A|B,) =[1+27"" V"7 [6,(A+ Y 2776, (4)]

for Ae.o/, where o, is a probability measure concentrated at c.

It is easy to see that # =[Q, </, #, P] is a Rényi space and the
sequence |B;! satisfies (4.1).

Equation (1.10) with B' = B and B? = B, is fulfilled for 4!, A%e o,
A', A%> = B ~ B; under the assumption that all the factors are positive, but not
in general, even if A!, A% c B, (e.g., this does not hold for 4! = {x, y} and A?
= {x]). This means that condition IV{? from [1] (see Section 1) is valid, but
none of the conditions (B), (B,), (B*), (IV) holds. Clearly, (1V’) does not hold
either.

Let

B,=RUB,)(=#) P,=P =Pon oxB,
and

P,(A|B,) = P°(A|B)) = lim P(4|B,) =6.(4) (A€ ).

We have B, < B, P,(B,|B) = P*(B,|B) >0, and

P,(ANB,|B) P*(ANB,|B)

PL(AIB) = PA|B) # =TS =l

for A={x} or for A= {y}. Hence X, =[Q, </, %#, P,] and X*
= [Q, o, 4, P*] are not Rényi spaces.

As the following example shows, condition (B°) is essentially weaker than
(IV) (cf. Theorems 4.2 and 4.3):

Example 4.2. Let Q =[0, 1]? and let o/ consist of all Borel subsets
of Q. Moreover, let B, =[0, 1/2] x[0, 1/2+1/2n] for ne N and

B' =[0, 1]1x[0, 1/2], B*=[1/2,1]1x[0,1], C =[1/2,1]x[O0, 1/4].
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We adopt # = {B, B?, B,: ne N} and

|4 N BY
|B'| ’

——— P(4|B) =
ICl Bl

P(A|B') = P(A|B?) =

for neN.

One can easily check that # =[Q, o/, 4, P] is a Rényi space, the
sequence {B;] fulfils (4.1), and (B*) holds.

However, condition (IV) is not valid because (1.10) does not hold,
e.g. for

A =[1/2, 11x[0, 1/2], A% =[1/2, 1]1x[1/4, 1/2].

The following example will show that condition (IV) is not sufficient for
a Rényi space to satisfy identity (4.9) and, in particular, that (IV) is an
essentially weaker condition than (IV’) (cf. Theorems 4.3 and 4.4):

Example 43. Let Q =[0, 1]x[0, 1] and let o/ be the family of all
Borel subsets of 2. Moreover, we define the sets

([ i+1 j+1 1i+1] [j+1 3—1
B"’"([O’ 3 ]"[0’ 3 D“(L 3i ]"[31’ 3

and the conditional probabilities

B,

P(A|By) =

for i, je N and Ae «.

The system # =[Q, o/, #, P), where # = {B;;: i,jeN} and P is de-
fined as above, is a Rényi space fulfilling (IV). Of course, condition (IV’) is
not satisfied.

It is easy to see that

# =B (Bj: jeN},
where
1 j+1
B; = [O, SJX[O’jTJ and % =4uv (B},
where B = [0, 1/3] x[0, 1/3]. This means that #* # 4*.

One can consider the a-th iteration of the considered operation ® of the
extension of a given Rényi space # = [Q, <7, #, P] satisfying (IV), where «
is an arbitrary ordinal. Having defined #, = # and the iterations #
= [Q, 7, 4}, P3] satisfying axioms (I){IV) for all f < x and such that

(4.19) Ry Hy for B<f <a,
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we define
X = pk() (%),
1e.,
#= | @)
and
(4.20) P;(A|B) = P3(A|B) for Ae .o/, Be(%}) .

Definition (4.20) is correct because of (4.19).

THEOREM 4.5. Given a Rényi space R with property (IV), the system 9,  is
the smallest Rényi space containing R and closed with respect to the operation °.
More precisely:

(1) o, satisfies conditions (D{1V);
(i) %5, > A;

(iii) (4,)° = 75,5

(iv) if # is a Rényi space such that # = # and #* = R, then K, < #.

Proof. To prove (i) note that if Be 4 or B, B'e #4;, then Be(4})* or
B, B'e(#3)", respectively, for some B < a, and thus axioms (I){IV) hold in %4
by transfinite induction and Theorem 4.3.

By transfinite induction again, one can prove that # < #; for every
ordinal « < w,, and hence, in particular, (ii) and (iv) hold.

Now, suppose that {B;} is a decreasing sequence in %, such that

“ P;(B;+.|B;) > 0.
i=1

Of course, B;e(45,)° for p; <w, (ieN), so there is « <w,; such that
B;e A4 (ie N). Since

[I P:(Bis11B) =[] P.,(Bis1|B) >0,
i=1 i=1
we have

N Bie(#) < 4.
i=1
Thus we have proved the inclusion (4, )* = %,,. From (4.5) it follows
now that (4,)* = 4, and (P, )* = P, on .o/ x(A4,,)" = o/ x A,,, so (iii) is
shown and the proof is completed.

5. Unions. Now, we are going to extend a given Rényi space &

=[R2, s/, #, P] joining to # unions B, = {J B; of increasing sequences
i=1
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{B;}, B, #, and defining a conditional probability for this extension by (2.5).
By Remark 2.1, we assume that increasing sequences {B;}, B; € 8, satisfy
the condition

(51) I1 PBi1Bisr) > 0.

i=1

THEOREM 5.1. Let R =[R2, o/, B, P] be a Rényi space and let

(52) B,=U B

for a fixed increasing sequence {B;}, B;c A, satisfying (5.1). Suppose that
() for each Be #, B < B,, and for each ic N identity (1.10) holds with
A', A>cBnB; and B! =B, B> = B,.
Then the system #, = [Q, o/, B,, P,], where B, = Bu {B,}, P,(A|B)
= P(A|B) for Ae s/, Be #, and

(5-3) P,(A|B,) = lim P(4|B) (Aed),
is a Rényi space. Moreover, definition (5.3) is consistent, i.e., it does not depend
on the choice of an increasing sequence {B;}, B;€ 8, satisfying (5.1) and (5.2).

Proof (cf. the proof of Theorem 11 in [3]). Given a set Ae .o/, we
define A=A B; and A% = AN B, n(2\B,_,) for k> 1.

Fix keN. Since A® c B; for i >k, the sequence {P(4A™|B)} (i =k,
k+1, ... is non-increasing, and thus the limit

lim P(A%|B) = P,(A%|B,)

exists.

Now, for arbitrary Ae .o/ let

PA|B,) =Y P,(A%|B,).
k=1
We are going to show that
(5:4) P,(4|B,) = P(A|B,)

for every Ae.of.
Fix ie N. By (III,), we have

P(A|By+,) = P(4|B) [] P(B,|B;.,)

j=i

for Aeo/, AcB;, and k=i, i+1, ...
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Hence

(5.3) P,(A|B,) = P(4|B) [] P(B,|Bj.,)

j=i

for every Ae o/, A c B;.
Now, let A€ .o/ be arbitrary. Since the sets A™ (ne N) are disjoint and

U A® =A4nB,, we get
=1

¥ P(4"|B)

n=1

P(A|B)=P(\) A"NB,|B)=
n=1
using (II1,), (II), and (1.4). Hence, by (5.5), we obtain
P(A|B) =[]] P(B;|B;+1)]"' Y P,(A"™|B,),
Jj=i n=1

which implies that the limit lim P(A|B;) exists and (5.4) holds.
We shall prove that #, satisfies axioms (I){III).
Axiom (I) is evident because

P,(B,|B,) = lim P(B,|B)=1.

To prove (II) suppose that 4,e.¢/ (neN), A,nA,, =D (n# m), and let
A=) A,. By (55) and the o-additivity of P, we have
n=1

P, (A"|B,) = } P,(AP|B,).
n=1

Hence, by (5.4),

P*(AIB*)= Z Z P*(Aslk)lB*)= Z z P*(Af.k)|3*)= Z P*(AnIB*),
=1

k=1 n=1 n=1 k=1 n

as desired.
The proof of (IIT) will consist of the following three cases: 1° B = B’

=B,, 2> B=B,, B =4, and 3° Be 4, B'=B,.
Case 1° reduces to the equation
P.(A|B,) =P, (AnB,|B,),
which follows, by letting i —» o0, from the equality
P(A|B;) = P(AnB,|B).
Similarly, case 2° can be derived from the identity
P(A N B;| B
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which holds for sufficiently large n because
P,(B,|B) = lim P(B;| B) > 0.

In case 3° note that (y) yields, for fixed ne N, the identity
P(AnB|B)-P(B,nB|B)=P(B,nB|B)-P(AnB|B),

where Aeo/, AnNBc B;, and i > n.
Letting i — oo, we get the equation

(5.6 P(A|B)-P,(B,n B|B,) = P(B,|B): P,(AN B|B,)
or, using the notation
¢, = P,(B,nB|B,), c;=P(B,|B),
pi(A4) = P(A|B), py(4)=P,(A|B,)
(#y, uy are measures on &/ by (III)), the equation

(5.7) C1 Uy (A) = ¢y uy (A),

where (5.6) and (5.7) hold on the ring &/, of all sets Ae.&/ such that
AN B c B, for some ieN, and thus hold for all Ae o/ because & is the
smallest o-ring containing </,; in fact,

A=[Ac@B)10[U (4nB)]

and A (Q\B,)e o, AnB;e o, (icN) for every Ae of.
Passing to the limits in (5.6) as n — oo, we get
P(A|B)-P,(B|B,) =P, (AnB|B,) (Ae)

using (I) and the inclusion B = B,. The proof of (III) is complete.
Finally, suppose that {B,} is another increasing sequence in # satisfying
(5.1) and (5.2). By the first part of the proof, the limits
vi(4) = lim P(AnB,|B), v,(A)=1lim P(AnB,|B)
exist for each Ae o/ and v,, v, are measures on /. They coincide on the

ring &/, of all Ae o/ such that A n B, < B, B, for some ne N. In fact, by
(v), we have

P(AnB,|B) P(B;n B;|B) = P(B;nB;| B)-P(AnB,|B),
provided A nB, = B; " B; and, by Theorem 2.1, v, =v, on &,.
As previously, we conclude that v; =v, on . It remains to note that
v,(A) = lim P(A|B) and v,(4) = lim P(4|B).

i—am i—+a

10 — Colloquium Mathematicum XLIX.2
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CoroLLARY 5.1 (see [3], Theorem 11). Let # be a Rényi space with a
fixed increasing sequence {B;}, B;€ #, satisfying (5.1) and let B, be of the form
(5.2). Suppose that

(Y) BN B;e B provided Be # and P(B|B;) >0 for ieN.

Then ®, is a Rényi space and definition (5.3) is consistent.

Proof. By Theorem 14, condition (y’) implies (y) and the assertion
follows by Theorem 5.1.

Remark 5.1. In the case B, e, the statements of Theorem 5.1 and
Corollary 5.1 are obvious by Theorem 2.1.

Remark 5.2. The statement of Corollary 5.1 is formulated in [3] (p.
298) as Theorem 11. However, the proof given there is not correct because,
when checking case 3° of axiom (III) (i.e, for Be # and B’ = B,), the first
part of Theorem 1.4 is used, although its assumptions are not satisfied.
Namely, from the assumptions A <« Byn B and P(B|By) > 0 the formula

P(A|By _ P(A|B)
P(BIBy ~ P(BIB)

is deduced (see [3], p. 300, lines 10-5 from below). But this is true only under
the additional assumption that B < By, which is not satisfied in general.

Moreover, there is no proof of the consistency of definition (5.3) in [3].

These two gaps are completed in the second part of the proof of
Theorem 5.1. Its first part is a slight modification of the proof given in [3]
(p. 298-300).

Now, given a Rényi space # =[R2, o, #, P}, fix an arbitrary family
A, of sets B, of the form (5.2), where {B;}, B,e %, is an increasing sequence
satisfying (5.1), and define P,(A4|B,) for all Ae </ and B,e %, by (5.3).
For such a fixed system, we shall apply in the sequel the notation %,
=[Q, «, #,, P,].

In particular, if 8, consists of all sets B, as above, we denote the
respective system by #* =[Q, o/, #* P*].

Now, we denote by (y,) and (y*)-the analogues of condition (y)
formulated for all B, belonging to #, and #*, respectively (cf. conditions
(B,) and (B*) in Section 4).

THEOREM 5.2. Let & be a Rényi space. The system R, is a Rényi space iff
AR satisfies condition (y,). In particular, #* is a Rényi space iff R satisfies (y*).
Moreover,

(5.8) Rc R, = R~
Proof. In a similar way as in the proof of Theorem 4.2 (see also

Theorem 3.2), we can deduce from Theorem 5.1 that if # satisfies (v,), then
A, is a Rényi space.
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Assume that #, is a Rényi space. Let B, € #, and let {B;}, B;€ 4, be an
increasing sequence satisfying (5.1) and (5.2). Further, let Be 4, B c B,,
A', A%e of, and A', A’ =« BN B, for fixed neN.

By (5.1), we have P,(B;|B,) >0 for ie N (cf. Remark 2.1).

If P(B|B) =0 for all ieN, then P(A/|B,) =0 for j =1, 2 by (1.5) and
(IT1,). Therefore (1.10) holds with B' = B and B? = B,

Suppose now that P(B|B;y)) > 0 for some ioe N. Then

P,(B|B,) > P,(BNn B;,|B,) = P(BN B, | B;))- P,(B;;| B,) >0

by (1.5), (II1;), and (III,).
Using (III), we have
P(4’|B)-P,(B|B,) = P,(4’|B,), P(4’|B) P,(B,|B,)=P,(A|B,)
for j =1, 2, and hence
Pt(Al IB*)'Pa(Ale*)
P*(BlB*)‘P*(B,,IB*)

P(A'|B)-P(A%|B,) = = P(4*|B)-P(A'|By),
i, condition (y,) holds in #.

Thus the first equivalence is proved. The second equivalence is a
consequence of the first one.

Since # < #, and, by Corollary 2.1, P=P, on o x%#, we have
R < R, . The inclusion &, = R* is obvious, so (5.8) holds and the theorem
is proved.

Remark 5.3. A similar asymmetry as that noted in Remark 4.2 appears
for the extensions #, and #*. Namely, to prove that &, (or, in particular,
#*) is a Rényi space it suffices to assume (y,) (or (v*), respectively) only for
fixed representations of sets B, by increasing sequences {B;} satisfying (5.1),
(5.2) and for almost all ie N. On the other hand, if #, (in particular, #*) is a
Rényi space, then (y,) (or (y*), respectively) holds for all representations of
B, by increasing sequences {B;} satisfying (5.1), (5.2) and for all ieN.

THEOREM 5.3. If a Rényi space R satisfies axiom (IV), then #* is also
a Rényi space satisfying (IV) and (5.8) holds.

Proof. Since (IV) implies (y*), #* is a Rényi space by Theorem 5.1, so
it suffices to show that

(5.9) P*(A'|B,)-P(A*| B) = P*(A?|B,)- P(A'| B)

for every Be #, B, € #*, and A', A% o/ such that 4!, 4> « Bn B,. By (IV)
and the definition of P*, (5.9) holds for all A!, A%>¢ o such that A « BN B,
and A> «c Bn B, for some i, ke N. Hence the general case follows by

applying analogous considerations as those at the end of the proof of
Theorem 5.1.
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THEOREM 5.4. If a Rényi space R satisfies (IV’), then #* is a Rényi space
satisfying (IV') and (5.8) holds.

Proof. By Theorem 5.3, it suffices to prove (IV’) for 9*.

Suppose that Bl, B2Ze #* and

P*(B, | B))+P*(B}| B,) > 0.
We can assume that P*(B|B2) > 0. We have
B,- U B. Ble#. B <B.,
for ieN, j=1, 2, and
[ PBIBLY >0 (=12,

Moreover,
lim P(B}|B}) = P*(B,|B})

by Theorem 2.1. Consequently, P(B}|B?) >0 and B; = B} n B?e # for suf-
ficiently large i, since & fulfils (IV’).

As B, B,,, (ieN) and |J B; =B, nB2, it remains to prove that
i=1

(5.10 P(B|P .,)>0
i=k
for sufficiently large ke N.
But, using (III), we have
» P*(Bj|B}) _ P*(Bi|B))

PB.' B = r— = r—
1 P&IB.) =11 5 155 = 55,189

for n >k, so letting n —» oo we get (5.10) for sufficiently large k because
lim P*(B;|BZ) = P*(B.|B}) > 0.
j= o
The proof is complete.
THEOREM 5.5. Suppose that a Rényi space R = [, o4, B, P] satisfies (IV)
(or (IV") and is additive, i.e.,
(+) B!, B*c # implies B' UB%*c %.
Then X* is a Rényi space satisfying (IV) (or (IV’), respectively) and
(5.11) R** = R*.

Proof. By Theorems 5.3 and 54, it suffices to prove (5.11).
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Let B,,c#**. This means that B,, = () B,, where Bj,ec%*
i=1
B, c B! for ieN and
(5.12) [] P*(B,| B > 0.
i=1

Further, we have Bi, = |J Bj for ie N, where
j=1

(513) Bje®, B\ Bj,, for i,jeN, [] P(Bi|Bi+,)>0 for ieN.
k=1
Since
lim P*(Bi|Bi) =1 for ieN,

j—-wo
we can assume that
(5.19) P‘(B{IB‘,) >1-1/i* for ieN.

k
Putting B, = |J Bj, we have
2

(5.15) B,e#, B, < B,,, for keN and ) B;=B,,
by (5.13) and (+).
We shall show that
(5.16) [T P(By|By+y) > 0.
k=1

Since B} = B} < B*' and B} c B, = B,,, < BX*!, we get
P*(Bi| BY)- P*(B%| BL*") = P*(B}| By*") < P(B,| By+,)

in view of (III,), (1.5), and (1.6)..
Hence

[T P(BxIBysy) = [] P*(Ble".)'k]_[ P*(B%|By'") >0
k=1 k=1 =1

by (5.12) and (5.14), and thus (5.16) is shown.

This and (5.15) yield B,,e%* and, consequently, the inclusion
A** < #* is proved. The converse inclusion and the identity P* = P**
follow now, by (5.8), and the proof is complete.

COROLLARY 5.2. Let # =[R2, </, B, P] be a Rényi space satisfying (1V)
or (IV') and the following condition of quasi-additivity:

(+) For any B', B*c B there exists Be # such that B' UB?> < B and
P(B'UB?* B)>0.
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Then H°** = K*_ If, additionally, #° = R, then (5.11) holds.

Proof. It suffices to notice that the Rényi space #° fulfils the assump-
tions of Theorem 5.5.

Remark 5.4. Note that condition (+) can be written in the following
equivalent form:

(+) For any B!, B’c # there is Be # such that B' UB*> < B and
P(B'|B)+ P(B*|B) > 0.

Conditions (+) and (+) are considered, though in another context, in
[1] (p. 356).

The following example shows that conditions (y), (), (v,), (v*), (IV) and
(IV’) cannot be omitted in Theorem 5.1, Corollary 5.1 and Theorems 5.2, 5.3,
5.4, respectively, and that condition (IV) cannot be replaced by IV{?
in Theorem 5.3.

Example 5.1. Let 2 =[0, 1] and let & be the family of all Borel
subsets of Q. Putting x,=1-2"%for i=0, 1, 2, ..., we define

B=!x;: ieN}, B,={x:i=0,1,2,...,n}, £={B,B,: neN},
B, = k_)l B,={x:k=0,1,2,...}, P(A|B) =5,1(A),

and .
P(A|B)=(1-2"9"! Z 2“5,i(A)
i=1

for Ae .o/, where §, is the probability measure concentrated at c.

It is clear that # = [, <7/, #, P] is a Rényi space and the sequence
{B;} fulfils (5.1). Equation (1.10) with A' = {x,}, A*> = {x,} and B' =B,
B? = B; does not hold for any i = 2, 3, ... This means that conditions (y),
(Y4), (v*) and (IV) are not satisfied because B = B, and A', 4> « BN B, for
i>2 It is easy to see that conditions (y) and (IV’) do not hold either,
but condition IV{? does.

Putting #, = #* =#0U{B,}, P, =P*=P on 4 x4%, and

P,(A|B,) = P*(4|B,) = lim P(4|B)= ¥ 276, (A),
' =1

we have B < B, and P, (B|B,) = P*(B|B,) =1>0, but

P,(ANB|B,) P*(AnB|B,)
P,(B|B,) P*(B|B,)

if A ={x,}, for instance. Thus the system #, = #* is not a Rényi space.

Now, replacing in Example 4.2 the sets B, by the sets [0, 1/2] x

x [0, 1—1/n], we get an example which shows that condition (y*) is essen-
tially weaker than (IV).

P,(A|B) = P*(4|B) #
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The following example proves that axiom (IV’) is not sufficient for
relation (5.11) to hold.

Example 5.2. Let 2 =[0, 1] and let o be the family of all Borel
subsets of 2. Now, let '

- (or-pfor 4 (o)

for i, je N, where
c _1 1 1+ !
U0 i Ti+j)/)

# ={Bj: i,jeN} and P(A|B)=

and let
|A N By

| Bl

for i, jeN and Ae «.

One can check that # = [, o/, 8, P] fulfils axioms (I){III). Moreover,
since i <i implies ¢;; <c;; for any j, jeN, we have B;nB;;e# for
arbitrary i, j, i’, j'e N, i.e.,, (IV’) holds.

We have

B*=ARBU{B;: jeN} and P**=%*u (B},
where
B,=[0,1]x[0,1-1/2j] and B=[0,1]%

Consequently, #* # #**.

Now, suppose that a fixed Rényi space # =[Q, o/, #, P] satisfies
axiom (IV) and define, by transfinite induction, the a-th iteration of the
operation * for any ordinal a: #§ = ®; if #F =[Q, o, B5, Py] for all §
< o satisfy (I){IV) and '

(5.17) REc A for B<f <u,.
then we put %5 = U (#§)* ie, %5 = U (#§)* and
B <a B <a
(5.18) Py (A|B)= P§(A|B) for Aeof, Be(%p)*.

Definition (5.18) is consistent by (5.17).
As in Theorem 4.5, we can prove the following result:

THEOREM 5.6. Given a Rényi space R with property (IV), the system Rg
is the smallest Rényi space containing ® and closed with respect to the
operation *. More precisely:

(1) 3, satisfies conditions (I)IV);

(i) R85, > X;
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(iii) (£3,)* = %35

l’

(iv) if # is a Rényi space and R < R, #* = R, then Re, < @
Remark 5.5. In Theorems 4.5 and 5.6, property (IV) can be replaced by
(Iv’).
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ditional probability spaces and also to Dr. Zbigniew Lipecki for several
remarks which allowed me to improve the text of the paper.

Added in proof. The remark at the end of Introduction is proved in [5].
Namely, given a Rényi space satisfying (IV), (%#°)3, is the smallest Rényi space
fulfilling (IV), containing # and closed with respect to the operations °, ®, and *
(Theorem 2 in [5]). On the other hand, (#°)F does not have these properties for
® < w, in general, which is shown in Theorem 4 of [6].
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