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REMARKS ON STABILITY AND SATURATED MODELS

BY

J. WIERZEJEWSKI (WROCLAW)

In this note we give a description of consequences of stability for
the existence of saturated models. In [5] Shelah gave a characterization
of those cardinals in which an unstable theory 7T has saturated models.
Our theorems complete this characterization in the case where stability
is assumed.

We use the standard notation as in [3]. If » is an ordinal number,
then

*>*A = {f: f is a function, dom(f)e » and ra(f) = 4}.

T always denotes a countable complete first-order theory with equality
in a language L, having an infinite model. Without loss of generality
we may assume that T' has an elimination of quantifiers (see [1]).

Let %A be a model of T and C < A; p is a type over C if p is a set of
formulas of the language of Th(¥, ¢)..c such that, for every formula ¢e p,

Fr(p) = {@,}
and, for every finite ¢ < p,

(917 c)ceC’ i= 3m0 /\ '
peq

A type p is called a ¢-type, where ¢ is a formula of L, if, for every
pep, v is one of the forms ¢(x,,¢) or Tlo(x,, ¢). The maximal ¢-type
included in p is denoted by »|@. A type p over C is complete if, for every
formula y of the language of Th(¥, ¢).. with at most z, free, either ye p
or “lye p. Similarly for p-types. 8(C)(8,(C)) denotes the set of all complete
types (p-types) over C. A type p over C is realized in U if there exists
ae A such that, for every wep, we have (U, ¢)..c = w[a]. Let » be an
infinite cardinal number. A model A of T is x-saturated whenever, for
every 0 = A and pe8(0), if |C| < x, then p is realized in A. A model
A is saturated if it is |A|-saturated. T is x-stable if |S(4)| < » for every
Ae Mod (7) such that |A| < ». T is stable if it is x-stable for some » > w.
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T is superstable if it is x-stable for every x» > 2. T' is unstable if it is not
stable. Let We Mod(7T) and C = A. I < A is a set of indiscernibles in A
over (C if, for every formula ¢ of the language of Th (%, ¢)..c and for every
1y eeesBpy Byy-enyine ] such that 4, # 4, i #4; for k #1 (n> |Fr(e))),
the following holds:

Uy )oee = @liay ooy tn] Py oony il

LeEMMA 1. Let T be stable but not superstable, and » an infinite cardinal
number. Then there exist formulas {p,(x,7,): 0< n< w}, a structure
We Mod (T) with |A| = = and sequences {@,: e x}, G,e A, such that

(i) for every neé =,

Py = {Pn(e, dnrn): I<n< w}

18 consistent,

(ii) for every te® x and every &< &, < x,

U= 13 2(n(®; Tongy) A Pu(®; Brngepy)),  where n = 1h(z)+1.

The proof follows by 6.10 of [6], Compactness Theorem and Down-
ward Skolem-Lowenheim Theorem.

LeMwMmA 2. Let T be stable. If T has a saturated model of power x for some
% such that w < x < x”, then T is supersiable.

Proof. Suppose T is not superstable. Let B be a saturated model
of T' of power x and let U be as in Lemma 1. By [2] we may assume U < B.
Then, for every 7ne “x, p, is realized in B by a c¢,¢ B, and if 7,, 7;,¢ "%,
N0 7 7, then Cpy F Cny- Hence

|Bl = [{e,: ne “x}| = x> x

and we get a contradiction.

The following theorem was stated in [6]. As far as we know the proof
was never published.

THEOREM 1. Let A be an infinite cardinal number. If T is A-stable,
then it has a saturated model of power A.

Proof. We consider three cases.
Case 1. A = cf(41). The proof can be found in [1].
Case 2. w < cf(1) < A

Let B* denote an elementary extension of B of minimal cardinality
and such that, for every pe S(B), p is realized in B*. Define, for every
ordinal number a and structure B, a sequence of structures B in the
following way:

BO — B, BE+) — (Qg(a))*’

B = J{BY: £¢< o} for limit o.
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Let %A be a model of T of cardinality at most 2. We define a sequence
of structures in the following way:

Ay =AU, QIE+1 = ‘a(lf-"w'ﬂ for £< 4,
A, = U <o} for limit o<, Wy, =AW,

It is easy to check that

(al) {A,: £§< A+1} forms an elementary continuous chain of models
of T.

(a2) If £<< A, then |4, < A (by A-stability of T and the cardinality
assumption on A).

(a3) If £< A, then UA,,, is |£+ w|T-saturated.

(24) A,,, is A*-saturated.

CrAM. U, i8 a saturated model of power A.

Of course, |4;] = A. Suppose B < 4,, |B| =x< i, pe S(B), ge S(4,),
and ¢ 2 p. By 2.5, 2.9 and 2.13 of [6], for every formula ¢(», ) of L,

Rank,(glg) < oo and there is a finite ¢, = q|p such that Rank,(q|¢)
= Rank,(g,) (for definitions see [4] and [6]). Let

q = U{g,: ¢ is a formula of L}.

By the countability of T and the assumption cf(1) > w, we may
suppose that ¢ is a type over some countable C = 4,. By 3.4 of [6], there
exists g,,e 8(4,,,) such that ¢,; = ¢ and, for every formula ¢ of L,

Ra’nkw(qﬂ. I (P) = Ra'nkw(q ] ‘P) .

Now we define by induction sequences {g,: &< 24} and {¢;: & << 24}
such that

(bl) é<n<20—>¢<4q,, E<i—>¢gcq and £<20->¢: < qu;

(b2) 7 <22 —>¢q,e 8(CU{c:: E< 7});

(b3) E< A —>cre Ay, and A< E< 24 —cee 4;,;

(b4) &< 24 — ¢, realizes ¢, and A< £< 24 — ¢, realizes ¢ (hence
also p).

Let g, = q. By the construction of g and (a3), there exists ae A4,

which realizes ¢. Take ¢, =a. Suppose that {g.:: é<7n< A} and
{c;: £< n< A} have been defined. Then take

q, = {(pe q: @ contains only constants from CuU{c;: é< ?7}}'

Of course, (bl) and (b2) hold. By (a3), there exists be 4,,, which
realizes g,. Put ¢, = b. Then (b3) and (b4) hold. Let ¢; = U {g:: §< 4}.
By (a4), there exists ¢;e A,,, which realizes q (hence also ¢;). We complete
the construction of these sequences, similarly as above, taking care of
(bl)-(b4) (q:Vq < ¢, so it is a type and, by (a4), can be realized in U, ,).
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In view of the choice of ¢ and ¢,,, we conclude, by (b1l) and 2.5 of
[6], that, for every formula ¢ of L and every ¢ < 24,

Rank,(go|¢) = Rank,(g;|9).
So, by 5.7 of [6], I = {c;: §< 24} is a set of indiscernibles in %, ,

over C. By 6.13 of [6], there exists I, < I such that |I,] = x = |B| and
INI, is a set of indiscernibles in %, ; over B. Then
Jy ={c: A< E<2In(INI,) #0, Jy=(INIy)nA4,; #0.

By (b4), there is d,eJ, which realizes g, and hence also p. Since p
is a type over B, there exists d,e J, which realizes p.

Case 3. w =cf(1)< A

In this case A” > A, and hence, by 6.10 of [6], T is superstable. We
proceed similarly as in Case 2, but using the degree of type (see Section 6
of [6]) instead of rank.

Remark. By exactly the same method we can prove the following
theorem (stated without proof in [6]):

Let T be stable and let A be an infinite cardinal number such that
cf(4) > w. Suppose that {A,: £§< A} is an elementary increasing chain
of models of 7, in which every U, is »-saturated. Then A = (J {A,: §< 4}
is x-saturated. Moreover, if T' is superstable, we can eliminate the assump-
tion c¢f(4) > w.

We note the well-known fact: A countable Boolean algebra has o
or 2% ultrafilters.

CoroLLARY 1. If T has a saturated model of power w,, then either T
18 w-stable or 2° = w,.

THEOREM 2. Let T be stable and let » > w. Then T is x-stable iff T
has a saturated model of power x.

Proof. The necessity follows by Theorem 1.

Sufficiency. Case 1. T is w-stable.

In this case T is x-stable by 2.7 of [1].

Case 2. T is superstable but not w-stable.

If x> 2%, then, of course, T is x-stable. Let o < » < 2® and let B
be a saturated (and hence, by [2], universal) model of 7' of power x. Let
A< B and |§(4)] > w = |A]. By the above-mentioned fact, |S(4)| = 2%,
and hence » = |B| > 2. We get a contradiction.

Case 3. T is stable but not superstable.

By Lemma 2, x” = x» and, by 2.13 of [6], T is =-stable.

As a corollary we obtain a natural characterization of theories having
saturated model for every uncountable power.

COROLLARY 2. (i) T has a saturated model for every uncountable power
iff T is x-stable for every » > w.
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(ii) T has a saturated model for every power x > 2° iff T is superstable.
The proof follows by Theorems 1 and 2 and by the following result
of Shelah [5]: Let T be unstable and let x > w. Then T has a saturated
model of power »x iff
X = 2%‘.

A<x
The next proposition shows that we cannot generalize this characteri-
zation for » > w.

PROPOSITION. (i) There is a superstable theory T, which i3 not w-stable
but has a countable saturated model.

(ii) There is a superstable theory T', which has not a countable saturated
model.

Proof. We shall describe the examples, but shall not prove the re-
quired properties.

(i) Let A = ({0}, R,>,.p, Where P is the set of all prime natural
numbers, and R, are binary relations defined in the following way:

n R, m iff Vr<p (reP —(p divides n > p divides m)).

T, = Th(A) satisfies (i).

(ii) Let B, = (“2, R, Where R; are unary relations defined in
the following way: E;(f) iff f(¢) = 0. Thus T, = Th(B,) satisfies (ii).

Remark. If in the definition of x-stable theories we admit also
finite cardinals (i.e., if we say T is x-stable whenever, for every e Mod (T
and every C < A such that |[C|< », we have |8(C)| < »+ w), we get a
somewhat artificial characterization:

T has a saturated model for every infinite power iff T is x-stable
for all » # w.
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