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1. Summary. The purpose of this paper is to record certain obser-
vations about Borel structures. After giving the relevant definitions in
Section 2, we show in Section 3 that every countably generated Borel
space has & minimal generator. In Section 4 we show that the intersection
of two separable Borel structures need not be separable. In Section 5
we show that there are atomless Borel structures on any uncountable
set. Finally, in Section 6 we give some applications of a theorem of Black-
well and Mackey, after a precise statement of the theorem.

2. Preliminaries. Our terminology is that of Mackey [3] (see
Sections 1 and 2). Let X be any non-empty set and B a o-algebra of
subsets of X. B is called a Borel structure for X and (X, B) — a Borel
space. As usually, if there is no fear of confusion, we shall identify X
with (X, B). A family G < B is called a generator for B if the smallest
Borel structure on X containing G coincides with B. A generator G is
called minimal if no proper subfamily of it is a generator for B. B is called
countably generated if there is a countable generator. An atom of B is
a set A in B which is not empty and such that no non-empty proper subset
of A is in B. B is called separable if it is countably generated and contains
singletons. An ¢somorphism between two Borel spaces is a one-to-one
bimeasurable map of one onto the other. As in Mackey, the relativized
concepts can also be defined. If (X, B) is a Borel space and Y is a subset
of X, then the relativized Borel structure on Y is denoted by By .

2 denotes the unilateral countable product of the two point space
{0, 1}. The Borel structure A on 2° is the product of discrete Borel structures
on component spaces. If {@,, n > 1} is a generator for a separable Borel
space (X, B), then the Marczewski function [4] defined as

f(@) = {xg,(); n > 1}

is a Borel isomorphism between X and the range of f in 2. (I, B) always
denotes the closed unit interval with its usual Borel structure.
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3. Minimal generators. In an oral communication Dr. D. Basu has
raised the question whether the usual Borel structure B on I has a minimal
generator. This question is answered in the affirmative by the following
theorem:

THEOREM 1. Any countably generated Borel space has a minimal
countable generator.

Proof. Let (X, B) be any countably generated Borel space. Clearly,
it suffices to consider the case where X is infinite.

We start with observing that the Borel structure A on 2 has a minimal
generator. Take A, to be all those points of 2“ whose n-th coordinate
is 1. Clearly, {4,, n > 1} is a generator for 4 and the removal of 4, results
in a Borel structure which cannot distinguish points differing only in the
k-th coordinate.

Define a, for n > 1 to be that point of 2° which has only the n-th
coordinate zero and a, to be the point which has zero in no coordinate.
Observe that if Z is any subset of 2“ containing {a,,n > 0}, then A4,
has a minimal generator. Enough to take B, = A, N"Z; where n>1
and A, are as described above.

Now take any separable space (X, B). Then the Marczewski function
brings an isomorphism between (X, B) and a subset Z of 2“. By suitable
altering the map on a countable subset of X we can assume that Z contains
the points {a,,n > 0} described above. Since the property of possessing
a minimal generator is an isomorphic invariant, (X, B) has a minimal
generator.

Finally, if (X, B) is any countably generated Borel space, then it
is in an obvious way structure isomorphic to a separable space. (Look

at the space X of atoms of B with the natural Borel structure B. ) Hence
it has a minimal generator. This completes the proof of the theorem.

Remark 1. If (X, B) is any separable Borel space and G any gene-
rator for B, then @ contains a countable subfamily which is also a generator
for B. However, G need not contain a subfamily which is a minimal
generator. For instance, take (I, B) with G = {[0,a); 0 < a<1}.

Remark 2. If (X, B) is any Borel space and G any generator for
B and Y c X, then Gy is & generator for B,. However, if G is a minimal
generator for B, then Gy need not be minimal generator for By .

Remark 3. If {(X,,B,),aed} is a collection of separable Borel
spaces, then their product (X, B) is separable iff all but countable number
of X, consist of a single point. However, if each B, has a minimal generator
(though not separable), then B also has a minimal generator. To see this
fix any minimal generator in the coordinate spaces and look at the one-
dimensional cylinder subsets of X whose base lies in the fixed minimal
generator.
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Remark 4. We do not know of any Borel structure without a minimal
generator (P685). We have two possible candidates for this purpose.
The first is the Borel structure on I generated by its analytic sets. It is
known [5] that it is not countably generated. The second is also a Borel
structure for I obtained as follows: Fix a non-Borel set M < I and look
at the o-algebra C consisting of all those usual Borel subsets of I which
are either digjoint with M or containing M. Observe that if M* does not
contain a perfect set, then C can be very simply characterized as
all countable subsets of M‘ and cocountable subsets of I containing
M and has got @ minimal generator. For general M we do not know
the answer.

4. Separable Borel structures.

THEOREM 2. There are two countably generated Borel structures on
I whose intersection is mot countably generated.

Proof. Let B be the usual Borel structure for I. Fix a non-Borel
set M in I. Let B, be the structure on I generated by M and B, .. The
intersection of these two is the C of Remark 4, which is clearly not coun-
tably generated. However, these two structures B and B, are countably
generated.

Remark 5. In fact, the above proof shows something more. Given
any separable Borel structure to I we can find a countably generated
Borel structure whose intersection with the given one is not countably
generated.

Remark 6. It has been remarked by Dr. J. K. Ghosh that we can,
in fact, get two substructures of the usual Borel structure of the real line,
both of which are countably generated while their intersection is not.
For instance, consider the structure L consisting of all usual Borel sets
invariant under translation by unit, and the structure M consisting
of all usual Borel sets invariant under translation by ¢, where ¢ is a fixed
+ irrational number.

Observe that in B, of the above proof no singleton subset of M
is available and hence B, is not separable. In fact, we can give two sepa-
rable structures to I with the above property. However, to do this we
need a lemma due to Halmos [1], section 7. The idea of the proof is
essentially the same as that of [1]. Since the proof is simple, we shall
give a complete proof here. Without explicit mention, the axiom of
choice has been assumed below.

LEMMA 1. There s a one-to-one map f of I onto I such that

@ f=r

(ii) if A and A° are uncountable Borel subsets of I, then f~'(A) is not
Borel.
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Proof. Let Q, be the first ordinal corresponding to the cardinal c.
Let {4,;1 < a < £} be an enumeration of the uncountable Borel subsets
of I whose complements are also uncountable. Since every uncountable
Borel set has cardinality ¢, we can associate with each a < (2, three
distinet points «,,y,,2, of I such that

(1) ma’ yae-A-a’ zaeAfz;
(i) @gy Yay za¢ﬁU %5y Y55 25} -
<a

Let f be the map which interchanges x, with z, and keeps every
other point fixed. Since any A, contains uncountable number of A,’s
and since y/’s are kept fixed by f, we conclude that uncountable number
of points of A, are kept fixed by f. Clearly, no 4, is kept invariant by f.
These two facts imply that if f~'(A,) is Borel, then f~'(4,) N A, can
neither be countable nor uncountable. Hence f~!(4,) is not Borel as
desired.

THEOREM 3. There are two separable Borel structures to I whose in-
tersection is mot separable.

Proof. Let B be the usual structure and B, = f~!(B), where f is
any map satisfying the conditions of Lemma 1. Clearly, B and B, are
separable, but their intersection is countable-cocountable structure.

Remark 7. The above proof shows the following stronger fact:
Given any separable Borel structure to I such that every set in this struec-
ture is either countable or has cardinality ¢, there is another such a struec-
ture whose intersection with the given one is the countable-cocountable
structure.

Remark 8. We do not know whether the function f of Lemma 1 can
be chosen so as to satisfy the further condition:

(iii) for every Borel set A,f '(A) is in the Borel structure on I
generated by analytic sets (P686).

Remark 9. We have given above two separable Borel structures
for I whose intersection does not contain any separable structure. We do
not know whether it is possible to give two separable structures whose
intersection is not separable but contains a separable structure (P687).

Remark 10. There is an alternative way, which seems to be elegant,
of proving Theorem 3. See Remark 14 of section 6.

5. Atomless structures. The usual example of a Borel space which
is atomless is I7 with the product of the usual Borel structures. One can
ask whether there is such a structure on I itself. We shall answer this
in the following theorem:

THEOREM 4. For any uncountable set X, there is an atomless Borel
structure.
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Proof. Let 8, be the first uncountable cardinal number. Equip
X™ with the product of discrete (in fact, any nice) Borel structures on X.
Fix any peX. Let X, =« X be the set consisting of all those points which
have p in all but finite number of coordinate places. Then observe that
X, and X have the same cardinality and that the relativized structure
on X, is atomless and can be carried over to X. This proves the theorem.

Remark 11. Clearly, a Borel structure is atomless iff every non-
empty Borel set contains two disjoint non-empty Borel sets. It is interest-
ing to observe that this is also equivalent to saying that every non-empty
Borel set contains &, disjoint non-empty Borel sets.

Remark 12. The above theorem says, for instance, that the real
line has an atomless Borel structure. In fact, one can find such a strue-
ture which is translation invariant. If X denotes the real line in the proof
of Theorem 4, observe that X and X, are vector spaces over rationals
and have the same dimension ¢, and hence there is a one-to-one additive
map on X onto X,. Since the structure on X, is translation invariant,
the structure on X brought by any 1-1 additive function will also be
translation invariant.

6. A theorem of Blackwell-Mackey. For any Borel space (X, B)
let (X?, B?) denote the produet of it with itself. Call a set A eB* symmetric
iff (x,y)eA implies (y, x)eA. Clearly, a rectangle is symmetric iff both
sides are the same. The symmetric sets form a Borel structure on X2
Mr. K. Viswanath has raised the question whether the symmetric strue-
ture for I* is generated by the symmetric rectangles. In this section we
.8ee how Blackwell-Mackey theorem will be instructive in answering this
question in the affirmative.

Call a separable space (X, B) analytic if it is isomorphic to an analytic
subset of I. By using the first principle of separation for analytic sets,
Blackwell [2], section 4, and Mackey [3], section 4, have explicitly noticed
the following theorem:

If (X, B) is an analytic space and C, D = B are countably generated
sub-c-algebras with the same atoms, then C = D.

Remark 13. Since (I, B) is an analytic space, it follows, in particular,
that any enlargement of B cannot be Borel isomorphic to B (compare
with [1], p. 628, lines 3, 4).

Remark 14. Take an uncountable Borel subset B and an analytic
non-Borel subset 4 of I with relative structures By and B, respectively.
Let f and g be any one to one functions on I onto B and A, respectively.
Let B, = f~'(Bjg) and B, = ¢g~'(B,). Then, clearly, B, and B, are separable
Borel structures for I whose intersection, by the theorem quoted above,
is not separable.
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THEOREM 5. For any Borel space (X, B) the symmelric structure on X2
18 generated by symmetric rectangles.

Proof. If X = I and B is the usual structure, then the theorem is
a consequence of the Blackwell-Mackey theorem. If X = I and B is the
relativized Borel o-algebra of I, then the result is still clear, because the
symmetric structure on X? is that restricted from I? and the structure
on X? generated by symmetric rectangles is the restriction to X2 of the
corresponding structure for I2. Consequently, the result is true for any
separable space (X, B) in view of the Marczewski function. Because of
the structure isomorphism the result is true for any countably generated
Borel space (X, B).

If (X, B) is any Borel space, observe that the symmetric structure
on X? always contains the structure generated by symmetric rectangles.
To the converse, take any symmetric set 4 ¢eB2; we show that it is available
in the structure generated by symmetric rectangles. Clearly, there is
a countably generated B, for X contained in B such that 4 eBi. Now
applying the conclusion of section 5 we get the result.

Remark 15. The above theorem can also be proved by transfinite
induction.

The author is thankful to Dr. A. Maitra for his encouragement.

Added in proof. Following the argument of [5] it can be shown
that P686 has a negative solution.
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