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A CANONICAL FORM
FOR A SYSTEM OF QUADRATIC FUNCTIONAL EQUATIONS

BY

J. A. LESTER (WATERLOO, ONTARIO)

Throughout this note we use the Einstein summation convention, i.e.
summation is implied on repeated indices %, j, k, ... from 1 to N, and on
the repeated index a from 0 to N. '

We consider the system of functional equations given by

(1) (@ +y) = IV g:(2)9; (),

where g;: F—C (F = R or F = () are linearly independent functions
and I, = (I'Y) are (N x N)-matrices over C.
System (1) is equivalent to (see [3]) the system

(2) h(z+y) = A7fi(2)g;(y),

where h, f;, g;: F—C, and (4Y) is a matrix over C, if we assume that.
det(47) # 0.

Both systems (1) and (2) have been studied quite extensively by
various authors: see [2] and [4] for examples of (1), and [1] for examples
of (2); see also [3] for further references to both.

In the following we show that the existence of a C*-solution of (1)
implies a canonical form for this system. This canonical form reduces (1)
to the system of equations

(i) gu(@+y) = Z’g, ) Ge—r(9),

r=0

whose general solution was found in [1]. In effect, this shows that if
a C*-solution of (1) is known, then the general solution is also known, formed
by linear combinations of solutions to (i).

Since various weak regularity conditions imply C*-differentiability
([1] and [3]), our hypotheses may be easily weakened.
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Accordingly, we assume that g,, gs, ..., gy is a C*-solution of (1), so
we have
(3) ge(@+y) = I gi(2) g (y).

If F = C, then the g,’s have all derivatives, since they are analytic.
If F = R and the a-th derivatives of the §;’s exist, then by differentiat-
ing (3) once with respect to # and a —1 times with respect to y, we obtain,
with z = 0,

7(y) = I g (0)g*(y), where giP(y) =

d’g
"

Hence the (a+1)-st derivatives of the §,’s exist, and so, by induction,
all derivatives of the §,’s exist. Thus a C*-solution of (1) is automatically
a C%-solution of (1).

LEMMA. If §y, §ay - -y Ju 18 & C*-solution of (1), then there exists a unique
linear N-th order differential equation with constant coefficients simultaneously
satisfied by all g;, assumed linearly independent.

Proof. Differentiating (3) a times with respect to x yields, with
z =0,

(4) §(y) = I'Y a2g;(y), where ai = g?(0).

The (N x (N +1))-matrix (af) takes some non-zero (N +1)-tuple
(vey ¥1y .-+ ¥x) into (0, 0, ..., 0), i.e. a;», =0 foralls =1,2,..., N. Thus,
from (4)

(5) v g8 (y) = 0. ‘

Any two such (N +1)-tuples are proportional, and »y5 # 0, since
otherwise the N linearly independent functions §,, gs,...,Jy would
satisfy a linear ordinary differential equation of order less than N, with
constant coefficients, which is impossible.

Using this lemma, we now derive a canonical form for system (1)
which depends only on multiplicities of distinet roots of the complementary
polynomial of the differential equation (5).

THEOREM. Let §,, ..., Jn be a C*-solution of (1) with each §; satisfying
equation (b). If g;'s are linearly independent and the polynomial equation
v,Z* =0 has r distinct (complex) roots a,, a,,...,a, with multiplicities
81y 83y ..y 8,, respectively, then there exists a non-singular matriz q = (g’)
such that the matrices A, = (AY), defined by

(6) A = (@R aG T
have the canonical form

Ay ='diag (A, Apay ooy Agy),y
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where
(i) A 18 an (8; X 8;)-matriz,
(ii) Ay =0 unless p;+1< k< pyyy,
(iil) if p;+1 < k< Pipy, then

0 . . 0 10 0
. [i—1
. j_2
0 .0
o (7).
(7) AM=1 0.‘ 9
0
0 . . . . . . . . ... .0

Pos -+ P, being integers defined by
3
p0=0’ pj =28i fOTj:]_’“.’zr’ andj=k_p1_'
i=1

Thus, the transformed functions g, (z) = (q 1)t 9:(x), where gy, gay ..., gn
18 any solution of (1), satisfy the canonical system

(8) g(w+y) = Agéﬂ(m).‘}j(?f)-
Proof. Using the binomial theorem, it is easily verified that the s

functions given by f;(x) = 2 '¢*, ¢ =1,2,...,8, aeC, satisfy

fulz+y) = me, 2)fi(y

i,j=1

where 2, = (2¥) is an (8 X 8)-matrix of form (7) with j replaced by &.
Applying this result to the r blocks of functions given by

hl(w) = ealz, hz(w) = we“lx, veny h’pl(w) — al—lealz,
hpl"'l(w) = 6621" hpl+2(w) = "”00227 seey hpz(w) = wsz-leazz’ coey
hpr__1+1(w) = %%, hp'_1+2(w) = 6™, ..., hy(2) = 2% 1%,

we infer that the functions h,, h,,..., hy satisfy the equations
(9) h(@+y) = A7 hy(2)h; (y),

where /A, = (AY) are the canonical matrices described above.
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But the hs are N linearly independent solutions of (5) as the g,’s
are. Therefore, there exists a non-singular matrix ¢ = (q}) such that
J.(x) = ¢.h;(x). Using this relation and equations (3) and (9) we obtain

[AY — (@i gn T2 1hi (@) By (y) = O
which, since the h;s are linearly independent, yields equation (6).
Equation (8) says that, for p;+1 <k < p;,,, we have

k—p;—1
‘ - k—p;—1\ - -
(10) g +y) = s=20 ( 'Z )gk—a(x)gpf+s+l(?/)~
By making the transformation
- gs(@)
gs() = —pi—D)1 for p;+1 <8< Pigy
(10) becomes
k—p;—1
(11) G@+9) = D Gies(@)p1145(9)
8=0

which is the system of equations for the composition of r blocks of Poisson
distributions. Equations (11) have been thoroughly treated elsewhere
(see [1] and [2]).
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