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SOME RESULTS ON FIXED POINTS AND THFEIR CONTINUITY

BY

BAIDYANATH RAY (BURDWAN, WEST BENGAL)

1. Introduction. Luxemburg [6] has proved contraction mapping
theorem in a generalized metric space. Diaz and Margolis [2] have given
fixed-point theorem in this setting. Fraser and Nadler [3] discussed the
continuity of fixed points for contraction maps in a metric space having
different metrics. The type of maps considered in Theorem 2.1 of this
paper was first considered by Kannan [4] who had proved fixed-point
theorems for a pair of such maps in a complete metric space, and he [5]
had also shown that contraction maps and those of type considered by
him are independent in the sense that neither implies the other. The
purpose of the paper is to prove theorems on simultaneous fixed points
in a generalized metric space, and to discuss their continuity in a metric
space having different metries.

2. Fixed-point theorems.

THEOREM 2.1. Let {T',} be a sequence of maps, each mapping a genera-
lized complete metric space (X, d) into itself, such that

a(Ti(2), T;(y)) < Bld(z, Ti(2))+d(y, Ty ()],

where 0 < f<1/2, and d(z,y)< oo. If x,eX and 2z, =7T,(z,_,),
n =1,2,..., then either (1) d(x;, ;,,) = oo for every integer i or (2) {x,}
d-converges to a common fixed point of {T,}.

Proof. Suppose (1) does not hold. Then there is a positive integer
N such that d(zy, 2y,,) < . Now,

d(Tyni1y Tnig) = d(TN+1(mN)’ TN+2(-'17N+1))

< Pld(zyy Typr) + A (Typrs Taie)]y
whence
p

A( @y, Bnps) ST A(Tyy Tyyy) < 0.

1-p
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Similarly,
ﬂ 2
ATy 42y Tais) < rf?d(“’zwu Ty 4a) S (m ad(Ty) Tyty) < 0.

and, in general,

‘
A(Tyi5y Typier) S (ﬁ) Ad(Zyy Tyy1) < 00

for every integer i.
Hence, for n > N, we have

n—-N
A(Tpy Tppy) < (L) d(Tyy Tyyy) < 0,

1-8

and
d(wn’ mn+l) < d(wn’ wn-i—l) + d(wn+l7 wn+2) + .0+ d(wn+l—17 m'n+l)
L (N4t 1-No NGy, myyy)
1—7
1—7r
where r = /(1 —8) < 1.
Since 0 <r <1, {z,} is d-Cauchy in X. Since (X, d) is complete,
{wa} d-converges to some point # in X. Let T, be a member of {T,}. Then,
taking n > N, we have

(@, Ty, (@) < (@, @) + @ (0, Ty (@)
= d(z, ) +d(Tn(w -1 Tno(w))
< A(@, ) + B[d(@n_1; @) + @) Ty ()],

— rn—N

d(zyy Zyi1)y

whence
(1—B)d (2, Ty (2)) < 8(x, T,) + P d(Tp_y, Tp)-

Letting n — oo, we have d(v, T, (2)) =0, i.e., # =T, (x). Thus
2z is a common fixed point of {7,}.

We remark that Theorem 2.1 remains true in a complete metric
space, where alternative (1) does not arise, and common fixed point
2« 80 derived is unique, because if y # # is another such a point, then

0 < d(y, 2) = d(Tp(y), Tu(x) < Bld(y, Tr(¥) + d(@, To(w))] =0,

a contradiction.

THEOREM 2.2. Let {T,} be a sequence of maps, each mapping a gener-
alized complete metric space (X, d) into itself, such that

(i) for any two maps T;, T; and for all z,y (y # x) in X with d(x, y)
< oo, we have d(T(x), T;(y)) < Ad(z, y), where 0 < A< 1,
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(ii) there is a point z, in X such that any two consecutive members of
{z,}, where 2, = T,(®,_;), n =1,2,..., are distinct.

Then either (1) d(x;, x;,,) = oo for every integer ¢ or (2) {v,} d-con-
verges to a common fizved point of {T,}.

Proof. Suppose (1) does not hold. Then there is a positive integer
N such that d(zy, Tx,,) < oo, and we proceed as in the proof of Theorem
2.1 to show that {r,} is d-Cauchy in X. Since (X, d) is complete, {z,}
d-converges to a point # in X. We now show that # is a common fixed
point of {T,}. Let T,, be a member of {T,}. Then taking » > N, we have

d (2, T (@) < A(, ) + @ (T y Tpo () = (@, 3,) + A (L (@), Ti())
< d(z, @)+ Ad(2,_y, @).

Letting n — oo, we have d(r, Ty (x)) =0, i.e., & = T,(x). Hence
& is a common fixed point of {T,}.

As before, we observe that Theorem 2.2 remains valid in a complete
meftric space, where alternative (1) does not arise, and the common fixed
point is unique.

The necessity of condition (ii) of Theorem 2.2 is shown in the following
example:

Example 2.1. Let X consist of two distinct elements z, and z,,
and let (X, d) be a metric space with d(z,, ;) < oco. Define T, as T, (x,)
= o, and T,(w;) = x,. Take T, to be the identity map and T; =1T,_,
for ¢ = 3, 4, 5, ... All conditions, except (ii), of Theorem 2.2 are satisfied
and {T;} have no common fixed point.

THEOREM 2.3. Suppose T; (+ = 1, 2, ..., N) are finite number of maps,
each mapping a metric space (X, d) into itself, such that each T'; i3 continuous
at a point u, and there i8 a point x, in X such that the sequence {z,: z,
= Tp(®y_,)}, where Tpy,, =T, for r =1,2,...,N and m =0,1,2,...,
converges to u; then u 18 a common fized point of T;, ¢ =1,2,..., N.

Proof. Let T, be any member. Now

(1) d(Tr(u)’ u’) < d(Tr(u)7 me+r) +d(me+r’ '“')
= d(Tr(u)7 Tr(me+r—l)) +d(me+r7 u)'

Since {z,} converges to %, {Tunism=1 DA {Tpyir_1}m-i 2lsO
converges to 4. By continuity of T, at «, we have

lim Tr(me+r—l) = Tr(u)'
m—co

As m —> oo, (1) gives T,(u) = u. So w is a common fixed point of
T,(6=12,...,N)
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The extension of Theorem 2.3 over a sequence of distinct maps is
not possible. This is evident from the following example:

Example 2.2. Let X = [0, 1] with the usual metric, and T;(x) = 1/¢
for all z€¢[0,1] and ¢ =1, 2,... Then, for every point z, in [0, 1], the
sequence {z,: x, = T, (®,_,)} converges to zero which is a point of conti-
nuity of each 7;. But T; (¢ =1, 2,...) have no common fixed point.

3. Continuity of fixed points.

THEOREM 3.1. Let (X, d) be a metric space, let T;: X - X be a map
with a fized point u; for i = 0,1,2,..., and let {T;}2, converge uniformly
to Ty. If

a(To(®), To(y) < Bld (2, To(2))+d(y, To(¥))],

where B is any positive number and x,ye X, then {u;} converges to u,.

Proof. Let be given ¢> 0. By the uniform convergence of {T;}
to T,, there is an index N such that d (T.i(w), To(w)) < ¢/(1+p) for all x
in X and ¢> N. Then

d(w;; uo) = A(Ti(wg)y To(o)) < &(Ts(ws), Tolw)) + (Lo (1), To(wo))
< @(Ti(us)y Tous) 4B (usy To(us)) +d (w0, Touo))]
= d(Ts(u), To(w;))+ Bd (Ty(uy), To(“i))
= (L+B)a(T(us), To(wy)) < (14+8) — 1+ﬂ =&,
whenever ¢ > N. Thus {«;} converges to u,.

THEOREM 3.2. Suppose (X, d,) 18 a metric space and {d,} is a sequence
of metrics converging uniformly to d,. Let {T',} be a sequence of maps con-
verging dy-pointwise to a map T, with fixed point u, and let each T, having
fized point u, satisfy

d (T (@), T, (y) [d (:L‘, -'I’))‘l‘d (?/; ))]7

where B is any positive number and x,ye X. Then {u,} converges to u,.

Proof. Let be given ¢ > 0. Since {d,} converges uniformly to d,,
and {T,} converges d,-pointwise to T, there is an index N such that

&

1@, (2, y) — do (2, y)| < <3 2A+h)

and

&
do(Tn(’“o); To(’“o)) < m,
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whenever # > N. Thus, for n > N, we have
do(Uyy Uo) = d (T (%)y To( ’“o))
do(T (%)y T'p(%o) )+do(T (%), To(“o))

€
< dy(To(ttn), T “0))+2(1+ﬂ) 2(1+p)

< ﬂ[dn(un, Tn(un))“*'dn (uo’ Tn('u'o)) 1 j—ﬂ
<ﬁdo(“07Tn(“°))+2(1ﬂiﬂ) 1—8%.3
po . B e .

2(1+p) 2(1+p) 1+8

This shows that {«,} converges to u,.

THEOREM 3.3. Let (X, d) be a metric space, and T;: X —~ X be a map
with a fized point u; such that

a(Ty(@), Tu(y) < Bla(z, Ty(@) +d(y, T:)],

where B is any positive number and © = 1, 2, 3, ... If {T';} converges pointwise
to a map T that maps X into itself with To(u,) = uy, them {u;} converges
to u,.

This is a corollary of Theorem 3.2 if we take d, = d for all =.

THEOREM 3.4. Suppose (X, d,) i8 a metric space, and {d,} is a sequence
of metrics converging uniformly to dy. Let T,: X — X be a map with a fixed
point u, such that

Ay (T (@), Tn(y)) < B (#; To(@)) +dn(y, Tn())],

where 0 < f<landn =1,2,3,... If {T,} converges d,-pointwise to a map
T, and if u, i8 a dy-limit point of {u,}, then u, is a fived point of T,.

Proof. Since u, is a d,-limit point of {u,}, there exists a subsequence
{u,,} of {u,} that dy-converges to u,. Let be given &> 0. Since {d,} con-
verges uniformly to d, and {T,} converges d,-pointwise to T,, there
is a natural number N such that

—B
4

1
d, (2, y) —do(x, )| < ¢ for allz,ye X,
—B

1
dy ('“'n;’ Uy) < 4

& and d, (Tn('“o), To('"/o)) < %7

whenever n > N and ¢ > N.
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Now, taking ¢,> N, we have

(2) do (“o; ’“'o)) do (%o, '“n.; )+ do(’“n, y T o('“o))

1-8
4

<

€ + do (T”io (un.;o)7 To(“o)) *

Again,

Ao (T, (thn, ), To(t0)) < do (T, (hn, ), T,.‘ (160)) -+ do (T, (), To(t)
—B

&€
< dn;o (Tﬂ.to(un‘o)’ ( 0)) + 6+?

1-8
< ﬂ [d'n,,o (uﬂ‘()’ Tn,-o(un‘o)) + dn‘o (uoa Tﬂ‘o('u’l‘))) + 4

1—
= ﬂdn,-o (’"’07 Tn,-o('“o)) + n A

+a
8 —
2

+ &
& '2— .
Also,

d (uo’ n; (uO)) 0 ’ ,u'n; ) + (un‘o7 Tﬂ.‘o (uO))

—B
< do (u(n u”t'o) + —4—— &+ dnfd (Tn,-o(un‘o) H -Tn{o(uo))

—8
2
1

= —;ﬁ e+ ﬂd"flo (uo ’ Tnio('MO)) ¢

1
<

€ + p [drqo (umo ’ T"io(u"'io)) + d“io (uO’ Tnio(uo))]

Therefore,

&
(4) dn,o(uoy Tn,o('“o)) < 9"
From (1), (2) and (3) we have

1— B 1— €
dy (o, T (%)) <f4—‘88+—2—3+—4—-8+—2— = &.

Thus u, = To(u,), i. €., U, is a fixed point of T.

Note that in the proof of Theorem 3.4 the uniform convergence of {d,}
to d, has not been used in its full strength. In fact, the uniform convergence
can be weakened to a quasi-uniform convergence (for the definition,

see [1], p. 139).
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THEOREM 3.5. Suppose (X, d) is a metric space and T;: X - X i3
a map with a fived point u; such that

a(T;(w), T;(v)) < Bl (2, Ty(w))+d(y, Ty(v))],

where 0 < f <1 and ¢+ =1,2,... If {I;} converges pointwise to T, that
maps X into itself, and if u, i8 a limit point of {u;}, then u, s a fixed point
of T,.

This is a corollary of Theorem 3.4 if we take d, = d for all =.

Finally, Example 3.1 shows that Theorems 3.2 and 3.4 do not hold
if the uniform convergence of {d,} to d, is replaced by pointwise conver-
gence. The example is a modification of one constructed by Nadler and
Fraser [3].

Example 3.1. Let X = {(27%27%) 4,5 =0,1,2,..., oo} with the
convention that 2=*° =0. If # = (27%27%) and y = (2™, 277), then,
for each integer n > 0, let

2% —2—™ ifl=p=mn,
427k 2-? ifl=n,p#nandm=0,
10 ifl=mn,p#nandm+#0,
dn($7?/) = dn(yy w) = I2—l_2—.‘PI lfl;én, p#’nandm=k=0,
10 if 1 #n, p #n,m =0and k 0,
(27F — 27" 4 27— 27P| if I #n,p #n,m #0and k #0,
and
10 if x =0 and m 0,
do (@, y) = do(y, ®) =| 127%¥—2-™ 127t —27?| if ¥ #£0 and m #0,
12—t —2-7| if t =0 and m = 0.

It is easy to verify tha,ﬁ, for each integer n > 0, d, is a metric on
X and {d,} converges pointwise to d,.
For each n > 0 define T,: X - X by

(27¢+9, 27 if §j =,
T, (27% 279) =l (1,27 if j #n and ¢ =0,
(1, 0) if § #£n» and ¢ # 0.

Let T,: X - X be defined by Ty(x) = (1, 0) for all ze¢ X. Now we
verify that
(i) for each » > 0, T, satisfies

2
(T (®); T () < = [dn (7) Ta(@) +dny, Ta(y))] foralla, ye X,
b

(ii) {T,} converges dy,-pointwise to T,
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(iii) T, has the fixed point
0,27 if » > 0,
1@, if n =0,

n

(iv) {u,} d,converges to (0,0) and not to the fixed point (1, 0)

of T,.

The author is thankful to Dr. A. P. Baisnab for his kind help in

the preparation of the paper.
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