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In Section 1 of this paper we give a construction of the greatest
congruence Trelation of an arbitrary abstract algebra A4 that is contained in
an equivalence relation E on A (!) and, moreover, we give a construction
of a drawing universal object in the category of modE epimorphisms
of the algebra A.

In Section 2 we consider a Moore-type sequential machine of any
quasi-algebra 4 and thus we obtain a form of the subquasi-algebra of 4
generated by a set X and a concept of X-computation in A.

In Section 3 applications of the considerations of Sections 1 and 2
to the algebraic theory of machines are contained. Moreover, we consider
an algebraic theory of {-machines, where K is an arbitrary equationally
definable class of algebras, which is a generalization of the usual one.
The usual algebraic machines are the {-machines, where & is the class
of all semigroups. Finally, we formulate some problems related to the
series-parallel composition of {-machines.

1. A category of modZ epimorphisms of an abstract algebra. We
shall consider algebras and quasi-algebras of type G in the sense of
paper [6]. Let @ = {g, ...} be any set of operator symbols. By m(g), where
ge @, will be denoted the rank of the operator symbol g, i.e. the number
for which g is m-ary. Any system A = {4, (g4, g¢ @)), where A is a set
and g4 is an m(g)-ary partial operation in A (i.e. g4is a mapping of a subset
of A™9 into A) for all g @, is called a quasi-algebra of type G- If, moreover,
in the system A4, a g, is an operation in A (i.e. g4 is a mapping of the whole
set A™® into A) for ge@, then A is said to be an algebra of type G-

If E is a binary relation on a set 4, and % holds between elements a
and b, then write aEb or {a,b>e F or a = b (mod E).

(1) In the sequel, the set of any quasi-algebra (or algebra) A will be denoted by 4.
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Let A be an arbitrary algebra of type G. The set of all algebraical
operations over algebra A will be denoted by (A), and the set of all m-ary
algebraical operations over A will be denoted by (A4),, (cf. [3]).

Definition 1. Let A be an arbitrary algebra of type G and let E
be an arbitrary equivalence relation on A. Then, gcF is said to be the binary
relation on A such that, for all x,ye A, we have = y (modgcE) if and
only if, for all m, for all fe (A),, and for all a;,...,a;_,,8;,,,...,8,¢ 4,
the following condition holds:

@y ooy @ 1y @y Bypgy ey Q) =M1y oony Qg 1y Yy Bypyy -eey Oy) (MOAE).

THEOREM 1. For every algebra A of type G and for every equivalence
relation B on A, the relation gcE is the greatest congruence relation of the
algebra A that is contained in E.

Proof. Obviously, gcE is an equivalence relation on A and if
z =y (modgeE), then, putting in Definition 1 f =1} = 1,4¢(A),, we
obtain I(z) = Ii(y) (mod E), i.e. # =y (mod E); thus gcF < E.

Now, we shall prove that gcE is a congruence relation of the algebra A.
Let ¢ = g4 be any fundamental operation of A and let g be (m(g)) p-ary.
Assume x; = y; (modgcE) for j =1, ..., p. Let fe(A4), and let 1 < i << m.
Moreover, let a,, ..., a;_y, @;.1, ..., 0,¢ A. We put m; =m-+p—1 and

{*) o =F(I ooy Iy, g, oy I ), I8y ey TY),

where I7(x,, ..., Tm,) = @; are the trivial m,-ary algebraical operations
over A. By the repeated application of Definition 1 we get, firstly,

Jil@y ooy @)y @1y oy oy Ty Biyy -oey By)
=f1(@y ooy @1y Y1y Bay ovvy Ty iy - -0y Q) (MO E)
since z, = ¥y, (mod gcE); secondly,
i@y ooy @e gy Y1y By ovoy Ty By oney Bi)
= f1(@ay ooy @1y Y1y Y2y Tyy ovy Tpy Ciyqy oy O) (MO E)
since x, = y, (modgcE); and continuing this inference we finally obtain
filay, ooy @y @y, @,y .., Tpy Biypy «eey Q)
=fi(@1yeery @1y Y1y Yoy ooy Ypy Bppry -« a,,) (mod E).
Hence, by (%), we have
f(au vy @1y G (X, ety Zp)y Wipqy oony “m)

Ef(a'u ooy @1y G(Y1y oovs Yp)s Bipry ooy a’m) (mod E),
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and thus, by Definition 1, we obtain
g (Zyy ...y ‘/‘vp) = g(Y1, -° '9 ?/p) (modgcE)

and, therefore, gcF is a congruence relation of the algebra A that is con-
tained in E.

Let E, < E be any congruence relation of the algebra A and let
z =y (mod E,). Then, for all m and for all f in (A),,, f preserves F, and
thus

F@yy eeey @1y @y By gy eeny Q) = f(y,y ..., O3 Yy Oip1y ey Gy) (MOd ),

but E, < E, therefore,

SOy ey @1y @y Qg enny Qy) = f(ayy ..y a;_4, 9, Gii1y ++ey Gp) (MOd E)

for all a,,...,a4;,_4,...,a, in A.

Hence, by Definition 1, # =y (modgcF) and thus E, < gcE, i.e.
gcE is the greatest congruence relation of the algebra A that is contained
in E. This completes our proof of Theorem 1.

From Theorem 1 we immediately obtain

(1.1) If E is a congruence relation of an algebra A, then gcE = E.

Let h: A—B be any mapping. Then the natural equivalence relation
E, on A induced by h (a,E,a, iff h(a,) = h(a;)) will be also denoted
by modk. Hence, we have a, = a, (modh) iff a;, = a, (mod E,).

Now, assume that h: A—B is a homomorphism (or epimorphism)
of an algebra A of type @ into an algebra B of the same type G and let F
be an equivalence relation on A. Then % is said to be mod E homomorphism
(or mod E epimorphism) of the algebra A provided modh < E. Obviously,
mod . is a congruence of 4 induced by the homomorphism k. Hence, by
Theorem 1, we obtain

(1.2) If h: A—B is a mod E homomorphism of an algebra A of type G,
then modh < gcE.

Now we formulate

Definition 2. Let A be an algebra of type G and let E be an equiva-
lence relation on A. Then the quotient algebra 4% = A/gcE is called the
E-algebra of the algebra A. Moreover, the natural homomorphism, that
is the mod E epimorphism of A4 of the form 1¥: 4—A¥ with 1¥(a) = a/gcE,
is said to be the canonical mod E epimorphism of A.

Let & be an arbitrary class of algebras of type G closed under the
homomorphic images and assume 4e K.

Define a category of R-epimorphisms of the algebra A as follows.
The objects of this category are K-epimorphisms of A4, that is the epi-
morphisms of the form h: A—>B with Be K.

3 — Collogquium Mathematicum XXIX.1
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Let h: A— B and h,: A— C be two objects, i.e. two K-epimorphisms
of the algebra A. Then the morphisms of the first object into the second
one are the epimorphisms y: B— C such that the diagram

A—>B
!
N oo

18 commutative.

The category of mod E K-epimorphisms of the algebra A is the sub-
category of the one defined above, determined by the objects being mod ¥
epimorphisms of A and the same morphisms. The next theorem deter-
mines a universal drawing object of this category.

THEOREM 2. Let A be an arbitrary algebra of type G and let E be an
arbitrary equivalence relation on A. Then the E-algebra AZ of the algebra A
18 the unique minimal mod E homomorphic image of A, i.e., for each mod F/
epimorphism h: A->B of A, there exists exactly one epimorphism y: B—~>A¥
such that the diagram

A—2>B

|

\AE

is commutative.

In other words, the canonical mod E epimorphism A%: 4—-A4F of 4
is a universal drawing object in the category of all mod F K-epimorphisms
of A for each class & of algebras of type G containing 4 and closed with
respect to homomorphic images.

Proof. Since Ae K, therefore A¥¢ K. Let h: A—B be any mod E
K-epimorphism of A. Putting y(h(a)) = a/gcE, we obtain a well defined
mapping because if k(a,) = h(a,), i.e. if a, = a, (mod k), then, by (1.2),
@, = a, (modgeE). Obviously, y is an epimorphism and A¥ = yh. This
completes our proof of Theorem 2.

Consider a concept of division for algebras.

Definition 3. Let A and B be any algebras of type G. We say
that A divides B (write A|B) if there exists an epimorphism y: B;—~A
such that B, is a subalgebra of B.

Let us notice that the algebra division is a reflexive and transitive
relation and, moreover, for finite algebras, it is also an antisymmetric
relation (i.e. A|B and BJA and |4], |B| < ¥, implies A is isomorphic
to B).
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By Theorem 2 we have

(1.3) If h: A— B is a mod E homomorphism of an algebra A of type G,
then AZ|\B, where AE is the E-algebra of A.

The next proposition can be easily proved.

(1.4) If E, and E, are any equivalence relations on any algebras A,
and A, of type G and E = E, X E, is the direct product of E, and E,, then E
i8 an equivalence relation on the direct product A, X A, of algebras A, and A,
and gcE = gcE, x gcE, and, therefore, AT is isomorphic to the direct product
AP x A% of AFr and A2

2. A Moore-type sequential machine of a quasi-algebra. A Moore-
type sequential machine is any quintuple

M=<8,1,0, 4,4,
where
(i) 8 is a non-empty set of states,
(ii) I is a non-empty set of inputs,
(iii) O is a non-empty set of outputs,
(iv) 6: 8 x I—> 8 is called the transition (or next state) fumction, and
(v) A: 8— O is called the output function [4].

Let M be any Moore-type sequential machine. Define X1 as the free
semigroup freely generated by I. 2T is the set of all input strings. Define
(ZI)* as the free semigroup with identity freely generated by I. Notice
(ZI)} = 2T u(A), where A is the empty string. We then extend the appli-
cability of  so that it maps S X (2I)* into 8 by the repeated application
of the equalities

8(8, A) =s and (8, i,4s) = O[6(s, i), 4s]-

Define 4: 8 x (ZI)'—>0 by A(s, u) = A(8(s, w)) for all sin § and all «
in (2I).. We may associate with each state s in M the way it produces
an output for each input string (the input-output behaviour). This is
expressed by the function

(a) f: ZI>0, where f(u) = A(s, u) for each ueXI.

Function (a) is also called the algebraic machine corresponding to
the sequential machine M starting in the state s. The algebraic machines
will be considered in the next section.

Let A be an arbitrary quasi-algebra of type @G. Define

M,y =84, 1,4, O4; 04y 20>
by the following:
(1) 84 = {8 A°: |8] < oo}, where 8 = (83, ..., 8,,...) With 8,e 4 for
n=1,2,..., and |s| = k is the least natural number such that s, = s,
for each m > k;
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(2) I4 =1{<{g4,9): g4 is the fundamental operation of A induced
by ge G and ¢ is any permutation of the numbers 1, 2, ..., m(g), where
m(g) is the rank of the operator symbol g};

(3) 04 = A4;

(4) for 8 = (839 ..-98py...)e A%, |8| < oo, define d4(s, (gq,9>) =5’
= (81, .00y 8py...) DY

9aP(81y -++y Spmyg)  if this element is defined (the first case),

Sm(g)+1 in the opposite case (the second case),

s - in the first case
,g’.=[ mo)+i-1, for j =2,3,...;

Sm(g)+i in the second case

(B) Aq(8) = 8;, Where 8§ = (819 ...y Sy, ...) In 4.

M, is a Moore-type sequential machine which will be called the
sequential machine of the quasi-algebra A. If g, is the m(g)-ary funda-
mental operation of A and ¢ is any permutation of numbers 1, ..., m(g),
then

9aP(Zyy .-y xm(a)) = !IA(%(l); ) %(m(g)))

(cf. (4) in the above-mentioned definition).

Let X be a subset of a quasi-algebra A of type G and let C4(X) be
the subquasi-algebra of A generated by X. Let w be the dimension of G,
i.e. w is the least initial number 7 such that, for all ge @, 7 is not cofinal
with any number a < m(g), and v > m(g) (?). Then

CA(X) = U Xa?

o<<w

where X, 0 < w, are the Borel classes of the set X in the quasi-algebra A, i.c.

XO =X and 'X‘l' = U Xa v U gA(UXG)’
o<t geG o<t

where g,4(B) denotes the set of all elements of A which are the values
of the partial operation g, for elements belonging to B < A.

The least number o for which an element a belongs to X, is said to
be the X-Borel class of a in the quasi-algebra A.

The elements of C4(X) can be obtained from X by the input-output
behaviour of the sequential machine M ,. This is expressed in the fol-
lowing

(3) In this paper we consider only algebras and quasi-algebras with finitary
operations and partial operations. Therefore, w = w,. Our considerations can be
eagily generalized for arbitrary quasi-algebras and algebras.
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THEOREM 3. C4(X) = {A4(s, u): se X*, 8| < oo, ue (ZI)1}.
This follows from the definition of M ,. Moreover, let us observe that

(2.1) The X-Borel class of any element ae C4(X) i8 the least number k
such that a = A4(s, u), where se X° and k is the length of an input string u
of the machine M 4.

Let us consider a concept of an X-computation in a quasi-algebra A
of type G, where X is a subset of A.

Definition 4. A pair <{u, a) is said to be an X-computation in the
quasi-algebra A of type G if

(1) u = <{g14s 91> --- {Jpa) p,> 18 an input string of M;

(2') a = (ay,...,a,) is a finite sequence of elements of A which is
identical to a sequence obtained as follows:

(a,) consider a state s = (8;,...,8,,...) of M, with se¢ X“;

(a,) define a finite sequence s? (j = 0,1,..., p) of states of M, by

9 =5 and s — 8,697, (ga, 9))  foT § = 1,0, 5

let s@ = (s, s, ...) for j =1, ..., p;
(ag) the sequence a is identical to the sequence of the form

o 8PN L s gy

1 1
(819 +e0y Sm(gy) s(1 )7 ceey SSn)(gz)’ . migy_1)?

The X-computation {u, a) is said to be proper if the length p of the
input string » is the X-Borel class in A of the last element a, of the se-
quence a.

If {u, a) is an X-computation in a quasi-algebra A of type @, then it
is also called an X-computation of the last element a, of the sequence a, and
&, = A4(s, u), where se X is the state from (a,). Hence, by Theorem 3,
we obtain the following proposition:

(2.2) An element ae A has an X-computation in A if and only if it
belongs to C4(X). If an element ae A has an X-computation in A, then it
has a proper one.

Let us consider two quasi-algebras A and B of the same type G and
the corresponding sequential machines M, and Myg. Let

% = {g1as P1) --- {Ipas Pp,)

be any input string of M,. Define the corresponding input string up
of My by
up = {§1B) 91> -+ <IpB) Pp, -
Let h: A—B be a mapping and let s = (s8,, 8,, ...) be a state of M.
Define the h-image of s by h(s) = (h(sl), h(8,), ...). Obviously, h(s) is
a state of Mp.
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It is easy to prove the following proposition:

(2.3) If h is @ homomorphism of a quasi-algebra A into a quasi-algebra B
of the same type @, then

(a;) his a homomorphism of M4 into Mg, i.e. h(d4(s,u)) = op(h(s), ug),
and h(Z4(8,u)) = Ag(h(8), ug) for all s and u;

(ag) if (w, a) i8 an X-computation of an element a in A, then (ug, h(a)>
18 an h(X)-computation of h(a) in B.

Let a set X generate a quasi-algebra A of type G. Associate with
each element ae A a proper X-computation {u?% a®> of a in 4. Denote by
a® = (¢, Cgy ..., Cx_1, &) the sequence obtained from a® by removing all
elements of X except for the first one. a® is a finite sequence of elements
of A and, therefore, it defines a state

8(@%) = (Cyy +vvy Cp1y Opy Oy -+2) = (Chy ovuy Cpy -v2)s
where ¢, = ¢, for n < k and ¢, = ¢, for n > k. The element
a® = A4(8(a%), u?)

is called the o-image of a related to the X-computation {u®, a*). Moreover,
if f: A—»B is a mapping of A into a quasi-algebra B of type @, define
f°: A—->B by 3

f°(a) = 2g(f(s(a%), ug).

Obviously, f°(z) = f(«) for x ¢ X. The mapping f° is used in Section 3
in defining the series composition of K-machines. Now, we show that our
definition of f° is a generalization of the one given in [2] for semigroups.
Indeed, let, as in [2], A = 2X be a free semigroup freely generated by X
and let B be any semigroup. Every element a¢ A has exactly one proper
X-computation in A with the identity permutations. Let a = 2,a, ... 2,;
then such a unique proper X-computation of ¢ in A is the pair (u% a*),
where

u® = {150,151,

n—1 times
and 1 is the identity permutation of 1, 2, and
a
a® = (g, Tyy L1Tgy Tgy By LoTgy oovy Ly%g oee Ly_yy Ty B1Lg oo Ty).

Moreover,
~a
a® = (@1, B1%gy 1 Bylgy o0y Dy ... Ty,
and thus
Aa )
8(a%) = (X1 T1Tgy ooy L1 Ty o Tpy_15 By By Gy ...).

Hence, if f: A—B, then
f(s(&a)) = (f(wl);f(wlwz) y-- vy (@125 ... @, ), f(a), f(a), f(a), )
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and

f(a) = iB(f(s(&“)), “%) = f(@)f(2125) ... f(@y ... 2,_1)f (@)
as in [2].

3. KR-machines. In the algebraic theory of machines (cf. [1]) there
are arbitrary mappings of the form f: XY, where 2X is the free semi-
group freely generated by a set X, and Y is any set. The semigroup of
a machine f is the quotient semigroup f® = XX/=,, where =, is the
Myhill [5] congruence relation of 2X such that »;, =,x, if and only if
f(pz,q) = f(px.q) for all p, ¢ in (ZX).

The algebraic machine f is interpreted as a behaviour of input to
output of an automaton or a sequential machine (cf. [4]).

It is easy to see that =, = gcE, and f° = (ZX)®, where E, = modf
is the natural equivalence induced by f and (XX)%s is the E,-algebra of
the algebra XX (cf. Definition 2). Generalizing this conception of a usual
algebraic machine, we obtain the notion of a {-machine. Let & be an
arbitrary class of algebras of type @ closed with respect to homomorphic
images and having free algebras freely generated by any sets. In the sequel,
we shall assume that K is an arbitrary equationally definable class of
algebras of type @G. Let X be a set. Then, by K(X) we shall denote the
K-free algebra freely generated by X.

Let us consider three definitions.

Definition 5. Let X and Y be any sets. Then any mapping of the
form f: K(X)—>Y is called a K-machine.

Definition 6. Let f: K(X)—Y be an arbitrary R-machine. Then
the RK-algebra of the R-machine f (write f*) is the E,-algebra of K(X),
where B, = modf, i.e. f = R(X)¥7 = K(X)/gcE, (see Section 1). Moreover,
the mod E, homomorphisms of K(X) are said to be modf homomorphisms.

Definition 7. Let A be any R-algebra, that is Ae K. Then the K-
machine of A (write A7) is the unique homomorphism 47: R(4)—>A being
the extension of the identity mapping a > a for ae A.

Now we prove the following theorem:

THEOREM 4. If A is any K-algebra, A’ is the K-machine of A and A™
i8 the R-algebra of the K-machine A’, then A™ is isomorphic to A, that is
A = A,

Proof. By Definition 7, A”: R(4)—>4 is a mod 4’ epimorphism of
R(A), and thus E,sr = geF s by (1.1). Hence

A =~ K(A)/geE 45 = K(A)Fa = A,

This completes our proof of Theorem 4.
A fundamental extension of a R-machine is given by the next theorem.
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THEOREM 5. Let f: R(X)—>Y be any K-machine and let f* be the K-
algebra of f and, moreover, let f&: R(f*)—>f® be the K-machine of f*. Then
f =3, fh; (the fundamental extension of f), where

(by) hy: X—f* with hy(x) = x/gcE;, i.e. b, = 2% X;

(by) hy: K(X)—>K(f?)is the unique homomorphism (obviously, length-pre-
serving) being an extension of h, considered as a mapping of X into K(f*);

(bs) js: A=Y with j(a/gcE;) = f(a) for all ae K(X).

Proof. f¥h;: K(X)—f* is the unique homomorphism being an
extension of h;: X—f% But 1%: R(X)—f*, which is the canonical mod E,
epimorphism of {(X), is also a homomorphism being an extension of &,
and thus A% = f¥47. Therefore, f = j,f*h; since f = j,A%/. This completes
the proof of Theorem 5.

Consider a R-machine division.

Definition 8. Let f: K(X)—Y and g: K(Z)—~U be two K-machines.
We say that f divides g (f|g) if there is a homomorphism H: K(X) - K(Z)
and a function h: U—Y such that f = hgH, that is if the diagram

f(X)-I>7¥
. h
R(Z)——TU

is commutative.

We say f divides g length-preserving (write flg (1p)) if f|g with H being
a length-preserving homomorphism, i.e., for each ae K(X), the Borel
classes of @ with respect to X and of H (a) with respect to Z are identical.

Notice that the R-machine division and the division (Ip) are reflexive
and transitive relations. The next theorem gives connections between tho
K-algebra and the K-machine division.

THEOREM 6.

(¢,) Let f be any K-machine. Then f|f™ (Ip).

(c,) Let A, Be R. Then A|B implies A’|B’ (Ip).

(c5) Let f, g be any K-machines. Then f|g implies f*|g.

Proof. (c,) follows from the fundamental extension for f = j,f*h;
(see Theorem 5).

(c,) Suppose A|B. Let B’ < B be a subalgebra of B and let ¢: B'—>A
be an epimorphism. For each a< A, pick a representative Ge ¢~ '(a). Define
hy: A—>B by h,(a) = a@. Define h,: B—>A by hy(b) = ¢(b) if be B’ and
it is arbitrary if b¢ B’. Let h; be the unique homomorphism of K(4) into
K(B) being an extension of %, considered as a mapping of 4 into K(B).
h; is length-preserving. The mapping

B'h: R(4)>B < B
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is the unique homomorphism of R(A) being an extension of h,: A—B.
Hence ¢B’h;: R(A)—A is a homomorphism of {(A4) being an extension
of the identity mapping a+>a for all ae A. Thus, by Definition 7, 4" =
@B’ 1, and, therefore, by the definition of h,, we have A" = pB'h] = h,B'h].
Hence A’|B’ (1p).

(c;) Suppose flg. Then, by (c,), flg*/ (since flg and glg“f), and so
f = hg*’H, where H is a homomorphlsm Then ¢ H: K(X)—>g® is the
modf homomorphism of K(X) and, by (1.3) with ¥ = E;, = modf, we
have f*g®. This completes our proof of Theorem 6.

We have seen that, given any R-machine f: R(X)—Y, there is a cano-
nical K-algebra f* associated with f, f* being the unique minimal homo-
morphic image with respect to modf homomorphisms. It is natural to
ask the following question:

Suppose we take two K-machines f and g and combine them to make
new K-machines. Then, how are the f-algebras of the new K-machines
related to f* and g%?

First, if we take a R-machine g: R(Z)—U and code its input and out-
put sets, i.e. define a homomorphism H: R(X)—>K(Z) and a function
h: U—-Y, we obtain the R-machine f = hgH of the type f: K(X)—>Y.
We noticed that in this case f|g® since f|g (cf. Theorem 6 (cg)).

In the theory of usual machines two obvious ways to hook machines
together are series and parallel compositions. Consider these conceptions
for K-machines.

First, consider the case of the parallel composition. Let f: K(X)—>Y
and ¢g: K(Z)—U be two KR-machines. Define the parallel composition
of f and g to be the K-machine

fxg: RKIXXxZ)>Y xU
by putting

(fx g)(a) ={f(4:(a)), g(4:(a))> for all ae R(X x Z),

where 4, = p;4, i = 1,2, with 4 being the unique homomorphism of
K(X xZ) into the direct product K(X) x K(Z), which is an extension
- of the identity mapping <z, 2> —(x, 2) for all (x,2>e X X Z and p; is the
i-th projection. The mappings 4; are homomorphisms of the form

Ay KX xZ)>K(X) and  4;: K(X xZ) > RK(2).

The parallel composition of any finite number of RK-machines is
defined similarly. Let f,, ..., f, be R-machines of the form f;: K(X,)—~Y,,
i=1,...,m Let (f,x...xf))* be the R-algebra of the parallel compo-
sition f, X...xf, of f; and let f2x...xf! be the direct product of K-
algebras fi of a R-machine f;. Then we have

THEOREM 7. (f, X ... xf)M 1 f3x ... xf
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Proof. Let f; = j,i hf be the fundamental extension for f;, ¢ =
=1,...,n. Then the mapping

0: RIX, X ... x X)) > Ax...xf*
such that

= (b, (Ba(@)))s -y S0 (B7, (42(a))>  for all ae R(X, X ... x X,),

ie. 0 =flhy Ay X ... x f1'hg 4;, is a mod(f, X ... X f,) homomorphism of
KX, x ... x X;) since

JaX oo Xy = (Jg, X ... X Jyp)- 0.

Thus, by (1.3), we obtain the assertion of Theorem 7.

If & =2 is the class of all semigroups, then from the above- glven
considerations we obtain the well-known theorems for usual machines
(cf. [1] and [2]).

Now consider the difficult case of the series composition of K-machines.
Let f: K(X)—>Y and ¢g: K(Z)—>U be two K-machines. Assume that, for
every ae 8(X), a proper X-computation of ¢ in K(X) is fixed. f: K(X)>Y
may be also considered as a mapping of the form f: K(X) - K(Y). Define
f°: R(X)—>RK(Y)as in the final part of Section 2. Define the series compo-
sition of the K-machine f: K(X)—>Y and the RK-machine g¢: K(Z)->U
with the connecting homomorphism H: K(Y) —RK(Z) to be the K-machine
of the form gHf’: K(X)—U. From the considerations of the final part
of Section 2 it follows that the series composition of {-machines is a gen-
eralization of usual machines (c¢f. [1] and [2]).

We complete our considerations by formulating some problems related
to the series-parallel composition of K-machines.

PrOBLEM 1. How is the R-algebra of the series composition (gHf")*
related to f* and ¢%*? (P 874)

Let # be a collection of R-machines. Define an SP (&), series-parallel
closure of #, to be the least family of R-machines containing# and closed
under the operations of the series and parallel composition and the divi-
sion, that is

SP(#) = U {SP(#): i =1,2,...},

where SP,(F) =& and SPy(F) = {fo xf1, [P 3, haofhy: f1, f2 belong to
SP;_,(#) and h, hy, b, are functions}.
PROBLEM 2. What can be said about the K-algebras of K-machines
in SP(#), that is about the class SP(#)* = {f*: f is in SP(#)}? (P 875)
ProOBLEM 3. Let f be a R-machine. What are the families # of K-ma-
chines such that feSP(#)? (P 876)
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Problems 1, 2 and 3 are solved in the case & = X, where X' is the

class of all semigroups (cf. [1] and [2]).

{1]

{2]

3]
[4]
{5]
{6]
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