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The aim of this paper is to relate two obvious approaches to the
study of an equational class of algebras: the diagrammatic study of the
associated category, and the model-theoretic study of the associated
theory. Paramount among diagrammatic properties of objects in a category
is that of injectivity with respect to natural classes of mappings, and
we shall be interested mainly in such properties. Topics considered include
the Amalgamation Property, homogeneous universal algebras, equational
compactness and purity. '

Some of the results here are taken from [1]. The author acknowledges
with pleasure the helpful conversations he has had with Dr. G. Sabbagh
on certain topics and the motivation derived from a study of [10].

1. Preliminaries. The diagrammatic techniques are borrowed from
the theory of bicategories (see [12]), but it has been thought best for expo-
sitory purposes to suppress explicit mention of this (although the know-
ledgeable reader will have no trouble in reconstructing the general form
of the arguments). We shall in fact apply our methods to posets, but
in this simple case the modification of the algebraic techniques will be
clear. For simplicity all languages will be assumed countable (the general
case is not much harder, but somewhat less elegant).

The first definition introduces three key diagrammatic properties
of a variety.

Definition 1.1. .

(1) Let € be a variety. € is said to have the Amalgamation Property
(AP) if, whenever f and g are injections (i.€. 1-1 homomorphisms) with
the same domain, there are injections » and k with hf = kg.

(2) € has the Congruence Ewxtension Property (CEP) if, whenever f
is an injection and g a surjection (i.e. an onto homomorphism) with domain
that of f, there is a surjection h and injection k& with hf = kg.

(3) Imjections are transferable in ¥ if, whenever f is an injection and g
a morphism with domain that of f, there is a morphism % and injection %k
with hf = kg.
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The Amalgamation Property was introduced in this form by Jénsson
in [11], while the choice of name for Property (2) is clear from the following
easy lemma:

LeEMMA 1.2. € has CEP iff whenever B is a €-algebra, A a subalgebra
of B, and J a congruence on A, there is a congruence K on B with K nA* = J.

The following definition and theorem are well known to category-
-theorists.

Definition 1.3.

(1) A ecommutative diagram

f
A——>B
I
C—-—D

k

is a pushout diagram if whenever b’ and k' are morphisms with b'f = &'y,
there is a unique » with wh = b’ and uk = k'.

(2) € is said to have pushouts if every diagram C <« 4 — B can be
enlarged to a pushout diagram.

THEOREM 1.4. If € is a variety or the category of posets, € has pushouts.

Proof. Since ¢ has coproducts and coequalisers.

Now let X be an abstract class of morphisms. We say that pushouts
transfer X-morphisms if in any pushout diagram, with the notation of
1.3(1), fe X implies ke X.

By applying Proposition 1.1(9) of [12] to varieties or posets, the
next lemma follows:

LEMMA 1.5 (Kennison). Pushouts transfer surjections.

We conclude this section with two simple lemmas.

LEMMA 1.6. Injections are transferable in € iff pushouts transfer in-
jections in €.

Proof. Sufficiency is obvious. Conversely, in the notation of 1.3(1),
let f be an injection. Now there is a morphism %’ and injection %’ with
hWf =Fk'g. Hence there is » with wk = k', and so % is an injection.

LeMMA 1.7. Injections are transferable in € iff € has AP and CEP.

Proof. Necessity follows by 1.6 and 1.5. Conversely, let f be an
injection and g a morphism with domain that of f. Let ¢ = ¢,9,, where g,
is a surjection and g, an injection. By CEP let » and %k be morphisms
with hf = kg, and k an injection. By AP there are injections » and v
with uk = vg,. Then vg = (uh)f.

2. The Amalgamation Property and Injectivity. We now show how
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the well-known concept of injectivity can be used to give a general proof
of the Amalgamation Property.

Definition 2.1. Let A be an algebra of €, and u: B — C a morphism
of €. A is called u-injective if, for each morphism f: B — A, there is ¢:
C — A with gu = f. A is called injective if A is u-injective for all injections u
of €. Finally, € is said to have enough injectives if, for every algebra A,
there is an injection A — B with B injective.

THEOREM 2.2. Suppose € has enough injectives. Then. injections are
transferable, and so € has AP and CEP.

Proof. Let f: A — B and g: A —C be morphisms with f an injection.
Let k: C — D be an injection with D injective. Then there is h: B —~ D
with hf = kg.

The following varieties are known to have enough injectives:

(1) #: boolean algebras — as injective means complete (see 33.1 and
35.1 of [19]);

(2) o/: abelian groups — as injective means divisible;

(3) distributive lattices — by Corollary 2, p. 104, of [6];

(4) 2: distributive e-lattices (i.e., with 0 and 1 as constants) — by
modifying the proof of (3), or by [3];

(5) semilattices — by [8];

(6) Stone algebras — by [4].

Hence all these have AP and CEP. In addition, if # is the category
of posets, # has enough injectives (as injective means complete by [5]),
and so the obvious modification of the arguments (1)-(6) shows that £
has AP and CEP.

Note that result (3) solves a problem of [11] (i.e. Remark 2, p. 141).

3. Homogeneous universal algebras. Let n be an infinite cardinal.
An algebra A is called n-universal if, for every non-trivial algebra B of
power <1, there is an injection B — A, and n-homogeneous-universal if,
in addition, for any two injections u,v: B — A with |B| <n, there is
an automorphism ¢ of A with exu = v. A is called homogeneous-universal
(HU) if A is n-HU, where n = |4].

% is said to have the Joint Embedding Property (JEP) if, whenever
4 and B are non-trivial algebras, there are injections A —C and B — C
for some algebra C.

The next theorem is a well-known result of Jénsson (see [11]).

THEOREM 3.1 (GCH). Let € be a variety with AP and JEP. Then,
Jor each regular uncountable cardinal n, there is an essentially unique HU
algebra of power n. If, in addition, € is locally finite, there is a denumerable
HU algebra.

Thus, in particular, 2 has HU algebras of every regular cardinality,
and we shall now characterize these. To do this we need Lemma 3.2 (noting
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first that 4 can be regarded as a full subcategory of 2). The notion of
reflection can be found in [12].

LEMMA 3.2. Z# 18 reflective in D, the reflection of an injection is an
injection, and every reflection morphism is an injection.

Proof. This was established by Nerode in [15] using topological
methods. An algebraic proof is given in [1] (see Corollary 6.4.4).

We call the reflection D* of D the enveloping boolean algebra of D.
It is easy to see that if D is finite, so is D*, and, otherwise, |D*| = |D|.
With these remarks we can now establish

THEOREM 3.3. If B is n-HU for &, then it is n-HU for 2.

Proof. Let De 2 have 1 < |D| <n. Let u: D — D* be the reflection
injection for D. Now |D*| <n, and so there is an injection ¢: D* — B.
Then eu is an injection. Now let ¢, ¢': D — B be injections, where |D| < n.
Then there are injections f, f': D* — B with fu = ¢ and f'uw = ¢'. Since
|D*| < n, there is an automorphism % of B with hf = f’. Then he = ¢'.

4. Purity. First we introduce the following

Definition 4.1.

(1) Let 4 be a subalgebra of an algebra B. Then A is said to be a pure
subalgebra of B if whenever X is any finite set of equations over A which
is satisfiable in B, then X is satisfiable in A. An injection u: 4 — B is
said to be pure if uA is a pure subalgebra of B.

(2) An algebra A is called absolutely pure if every injection with
domain A is pure (this is called algebraically closed in [10]).

(3) Similarly one can define n-pure injection and absolutely n-pure
algebra for any cardinal n > w.

Two facts to note about pure injections are (1) the composition of
pure injections is a pure injection, and (2) if A — B — ( is a pure injection,
then 4 — B is a pure injection. ¢ always has enouSh absolutely pure
objects, on account of the following lemma of Scott in [18]:

LEMMA 4.2. For every algebra A there is an imjection A — B, where B
18 absolutely pure and |B| = max(w, |4]).

However, absolutely pure objects also arise from certain kinds of
injectives, as we shall now see.

Definition 4.3. A is called a local injective if A is u-injective for
each injection w: B — C with B and C finitely generated.

LEMMA 4.4. Any local injective is absolutely pure.

Proof. Let A be a subalgebra of an algebra B, and A be a local
injective. Let X be a finite system of equations over A in the variables
Dyy oeey Ty, SAY. Assume X' is satisfiable in B. Let a,, ..., a; be the elements
of A appearing in 2. Let 4, be the subalgebra of A generated by a,, ..., a;,
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and B, — the subalgebra of B generated by a,, ..., a;, and some solution
Zyy .0y &y of X in B. Now A, < B, and both are finitely generated. Since
A, < A, there is a morphism r: B, -~ A with r(a) = a for ae¢ 4,. Then
r(2y)y «o.y r(z,) is a solution of 2 in A.

One closure property that the absolutely pure algebras always enjoy
is given by the next lemma, which is due to G. Sabbagh.

LEMMA 4.5. Absolutely pure algebras are inmductive.

Proof. Let A be an algebra which is the union of a directed system
(4;) of subalgebras of A with A; absolutely pure for each i. Let A —~ B
be an extension of 4, and X a finite set of equations over A satisfiable
in B. Let a,,...,qa; be the elements of A appearing in 2. Now there is ¢ with
Ayy... 0 € A;. As A; > A — B is pure, X' is satisfiable in A4;, and so in A.

Hence in # every algebra A is absolutely pure. For A is the directed
union of its finite subalgebras, each of which is injective, and so absolutely
pure by 4.4.

5. Bounded injectivity. We start with the following

Definition 5.1. An algebra A is n-injective if A is u-injective for
each injection u: B — ¢ with |[C] <n.

By suceessive extension it is easy to establish that if 4 is n-injective,
it is in fact u-injective for all injections #: B — C with |B] <nand |C]| <n.
Clearly, every injective is n-injective. But a more interesting source of
n-injectives is provided by the next theorem.

THEOREM 5.2. Let € have CEP. Then any w-HU s n-injective.

Proof. Let A be n-HU, »: B — C be an injection with |(] < n, and
f: B - A be a morphism. '

(1) Suppose first that f is an injection. Then let ¢: C —- A be an
injection (as A4 is n-universal). Now eu, f: B — A are injections, and so
there is an automorphism » of A with v(eu) = f. Then ve: C — A is such
that (ve)u = f. : '

(2) In general, let f = f,f,, where f,: D - A is an injection, and
fi: B — D a surjection. By CEP, there is an injection h: D — F and
a surjection k: ¢ — E with ku = hf,. Now |E| < |C| < n. Hence, by (1),
there is g: E — A with gh = f,. Thus (gk)u = ghf; = f.

Theorem 5.2 for # is a result of Maczynski [13] and in fact the proof
given here is motivated by his proof. The possibility of generalizing the
proof in [13] was pointed out to the author by B. Rotman — in addition,
G. Sabbagh informs me that he has obtained a similar result independently.

We shall now consider n-injectives in # and #. A poset P will be
said to have the n-Imterpolation Property (n-IP) if whenever A and B
are subsets of P of power less than n and A < B there is x¢ P with A <
< B. Then the following is true.
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LeEMMA 5.3. Let 1 > w. Then, in (a) & or (b) %, an object A with the
n-IP is n-injective.

. Proof. Note first that it is enough to show that A is u-injective
for simple extensions u: B — C with |C| < n. Then (a) is obvious and (b)
follows from the proof of Theorem 33.1 of [19].

The converse of 5.3 is true in both cases, but for the moment we
only prove Part (a). Assume P is n-injective and that A and B are subsets
of P of power less than n with A < B (as if A "B # @ there is « with
A<x<B). Let C = AUB with the induced order, and D = Cu {z},
where A < x < B. Then there is g: D — P with g(¢) = ¢ for ceC (as
|D] <n). Thus A <g(x) < B in 2.

However, there are many varieties with no non-trivial injectives.
It is inteYesting to note that in several of these cases it can in fact be
shown that there are not even any non-trivial local injectives. As an
example we consider the variety ¥ of groups.

We recall that, in Theorem 2 of [2], Baer proved that ¢ has no non-
-trivial injectives.

THEOREM 5.4. ¢ has mo non-trivial local injectives.

Proof. Let A be a local injective, |A| > 1. Let Z be the infinite
cyclic group, Z*Z the free product of Z with itself, and p: ZxZ - Z —
the canonical surjection. By a result of [9], there is an injectione: Z*xZ — 8,
where 8 is a finitely generated simple group. Take ze A with # # 1 and
define w: Z -~ A by u(g) = « (where g is a generator of Z). If f: § - A4
is a morphism with fe = up, then f is an injection (as 8 is simple and u
has non-trivial range), and so p is an injection. But p is a proper surjection.
Hence no such f exists, and so A is not e-injective.

Note that the same type of argument using the diagram Z < ZxZ — §
shows that ¥ does not have CEP. However, ¥ has AP (see [16]), and
so CEP is not a consequence of AP.

Lastly, we show that if injections are transferable, absolutely pure
algebras have the following injectivity property:

An algebra .4 is called a hyperlocal injective if A is u-injective for
all injections u: B — C, where B is finitely generated and C is finitely
presented.

THEOREM 5.5. Suppose that injections are transferable. Then any
absolutely pure algebra i8 a hyperlocal injective.

Proof. Let A be absolutely pure, C a finitely presented algebra,
and B a finitely generated subalgebra of C. Let f: B — A be a morphism.
Then there is an algebra D such that A is a subalgebra of D and a mor-
phism ¢g: C — D such that g(b) = f(b) for be B. Let (S; W) be a finite
presentation of C. List 8 as 8,,...,8,. Let u,, ..., u; be words in S whose
values in C form a set of generators of B. Take variables «z,, ..., z,. For
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any word w over S let w(x) be the result of replacing s; by x; in w for
1 < ¢ < n. Now consider the following finite system X of equations over A :

u; () = f(u;) for 1<<i<k,

~

w(z) = w'(x) for each pair (w,w')e W.

Clearly, X' is satisfiable in D with x; = ¢(s;), and as A is a pure sub-
algebra of D, X is satisfiable in A. Let x; = a; be a solution. Then there
is a unique morphism h: C — A given by h(s;) = a;, and h(b) = f(b)
for be B.

We shall say that a variety € is locally finitely presented if every
finitely generated algebra of € is finitely presented. Then we have the
following corollary: ,

COROLLARY 5.6. Let € be locally finitely presented, and suppose that
injections are transferable in €. Then an algebra is absolutely pure iff it
18 a local injective.

Proof. Necessity by 5.5, and sufficiency by 4.4.

Note that the following varieties are locally finitely presented: boolean
algebras, distributive e¢-lattices, semilattices, and abelian groups. Thus
Corollary 5.6 applies to all of these. By the obvious modification of the
arguments, it applies to the category of i)osets as well, and we obtain
the result that a poset is absolutely pure iff it has the «-IP.

For n > w, the situation for absolute n-purity is more pleasant.
For if A is an algebra, A has a natural presentation (4 ; D), where D is
the set of all equations over A holding in A. Thus a trivialisation of the
method of 5.5 and a generalization of the method of 4.4 yield the result
that in a variety where injections are transferable, an object is n-injective
iff it is absolutely n-pure.

6. Equational compactness. In this section we elucidate the connection
between equational compactness and injectivity. The first definition is
taken from Myecielski [14].

.Definition 6.1. Let n be an uncountable cardinal. An algebra A
is n-equationally compact (n-EC) if whenever 2 is a set of equations over 4
of power less than n and every finite subset of X' is satisfiable in A4, then X
is satisfiable in 4. A4 is called equationally compact if A is n-equationally
compact for all n.

The correct notion of injectivity to use is the following:

Definition 6.2. A is n-pure-injective if 4 is u-injective for all pure
injections u: B — C with |C| <n.

LeMMA 6.3. Let n > . If A is n-pure-injective, then A is n-equationally
compact.

Proof. Let X be a set of equations over A of power less than n with
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every finite subset satisfiable in A. Let C be an elementary subalgebra
of A containing all the elements of A appearing in X and such that |C] < n,
by the Downward Lowenheim-Skolem Theorem. By an application of
the Compactness Theorem, there is an elementary extension A4 — A*
of A with X satisfiable in A*. Let B be an elementary subalgebra of A*
containing ¢ and some solution (;) of X in 4* and such that |B| < n.
Thus X is satisfiable in B. Now the inclusion C — B is elementary and
|B] < n. Hence, by hypothesis, there is a morphism r: B — 4 withr(¢) = ¢
for ce C. Then (r(z;)) is a solution of X in A.

One immediate application of this is a characterization of n-EC
boolean algebras which answers a question of Weglorz (see [20], p. 298).

COROLLARY 6.4. Let n > w. Then in the variety of boolean algebras,
the following properties of an algebra A are equivalent:

(1) A has n-IP;

(2) 4 s n-injective;

(3) A s n-EC. .

Proof. (1) —(2) follows from 5.3(b); (2) — (3) follows from 6.3;
and (3) — (1) is an easy argument (see [20], p. 296).

Now let n > w be regular, and let B be an n-saturated model of the
theory of atomless boolean algebras (using Theorem 1.7 of Chapter 11
of [7]). Then clearly B has n-IP. But B has a strictly increasing w-sequence
(a,), and no such sequence can have a sup. Thus B is not even w,-complete.

We now prove a converse to 6.3, and to do this we introduce the
notion of the equation-system of a diagram. Let A L BsCObea diagram,
where B — C is an inclusion. Then the equation-system 2 of this diagram
is defined as follows. Take variables z,,ce C, and let X consist of the
following equations over A:

(1) «, = f(b) for be B;

(2) @, = 0(Tepyy - -+ To(ny) for every operation symbol o, of rank n,
for instance, and each sequence ¢, ¢(1),..., ¢(n) of elements of C with
¢ = o(e(1), ..., ¢(n)) in C.

Note that x, = g(c¢) for ce C is a solution of X' in 4 iff g: C - 4
s a morphism extending f.

THEOREM 6.5. Let € be a variety, and A LB>0a diagram in €
with B — C an inclusion. Then the equalion-system X of this diagram is
finitely satisfiable in A if (a) A is a local injective or (b) B — C is pure.

Proof.

(a) Let Z’ be a finite subset of X, § = {ce C: z, occurs in X'}, and
R = 8 NnB. Let ¢’ be the subalgebra of C generated by S, B’ be the sub-
algebra of B generated by R, and f = f|B’. Then B’ < ¢’ and both are
finitely generated. Thus there is a morphism g: ¢’ — A with g|B’ = f.
Clearly, x, = g(c) for ce S is a solution of X’ in A.
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(b) Let X’ be a finite subset of X, 2* consist of those equations in X’
of type (2) together with x, = b for each equation x, = f(b) of type (1)
in 2. Let ¢(1), ..., ¢(k)e C be the indices of the variables occurring in X*.
Now X* is satisfiable in ¢, with Teqy = ¢(1), and as B is pure in C, z*
is satisfiable in B. Let . = b; be a solution of 2% in B. Then Zery = F(b2)
is a solution of X’ in A.

This result has three important consequences.

THEOREM 6.6. Let n > w. Then an algebra A 1is n-injective iff it is
a local injective and n-equationally compact.

Proof. Necessity follows by 6.3, and sufficiency by 6.5(a).

THEOREM 6.7. Let n > w. Then an algebra A i8 n-equationally compact
iff it is n-pure-injective.

Proof. Necessity follows from 6.5(b), once we note that |Z] <n
if |C] < n. Sufficiency follows from 6.3.

LeEMMA 6.8. Assume the hypotheses of Theorem 6.5. Then there is an
elementary injection ¢: A — A* and a morphism g: C — A* with g|B = ef.

Proof. By the Compactness Theorem, let ¢: A —~ A* be an elementary
injection such that X is satisfiable in A*. Let 2, = g(c) for ce C be a solution
of Z in A*. Then g: ¢ - A* is a morphism, and g(b) = =z, = ¢(f(b))
for be B.

Hence we can establish

THEOREM 6.9. If € has enough local injectives, then inmjections are
transferable in €.

Proof. Consider the diagram 4 £ B % O, where « is an injection.
Let d: A — D be an injection with D a local injective. Then there is
an injection ¢: D -> D* and a morphism g: ¢ — D* such that gu = e¢(df)
= (ed)f, by 6.8.

Thus we have found another way of establishing AP and CEP for
varieties. However, Theorem 2.2 is not in practice superseded, and it
is useful for categories in which the Compactness Theorem is not available
(e.g:, metric spaces). ‘

Finally, we note that Theorem 6.9 has a strong converse, as follows.

THEOREM 6.10. Suppose that injections are transferable in €. Then,
for each n > w, € has enough n-injectives.

Proof. It suffices to consider regular n. Let 4 be a non-trivial algebra.
By using the method of the Homogenization Theorem 3.4 in Chapter
10 of [7], i.e., repeated applications of AP, we obtain an extension H
of A which has the property of Part (1) of 5.2. By CEP, H is then n-in-
jective (as in -5.2).

7. Distributive lattices. We use some of the preceding techniques



174 P. D. BACSICH

to characterize the absolutely pure and n-injective objects in the category
2 of distributive e-lattices.

Let A be the 4-element algebra {0, 1, a, b} withaan b = 0andav d =1,
B the subalgebra {0, a, 1}, and u: B — A the inclusion. The next result
is easy to establish. '

LemmA 7.1. In 2, C is boolean iff C is u-imjective.

We can now characterize the n-injectives in 2. Note that the method
which will be used in (2) is essentially due to Balbes (see [3], Lemma 3.1).

THEOREM 7.2. Let n > w. Then in 2, C is n-injective iff C is boolean
and has n-IP.

Proof.

(1) Let C be n-injective. Then C is u-injective, and so boolean. Since
Z# is isomorphic to a full subcategory of 2, C is n-injective in %, and so
has n-IP.

(2) Conversely, let ¢: D — F be an injection, where |E| <n, and
f: D — C a morphism, where C is boolean and has n-IP. Let ¢*: D* — E*
be the reflection of ¢, and f*: D* — C the reflection of f. Let i,: D — D*
and ip: E — E* be the reflection morphisms. Then e*i; = ige, and
f*ip = f. Since D*, E* and C belong to #, and C is n-injective in %, let
h: E* - C be such that he* = f* (as |E*| <n and e* is an injection).
Then (hig)e = he*ip = fYip = f.

COROLLARY 7.3. In 2, C is absolutely pure iff C is boolean.

Proof. If C is absolutely pure, C is w-injective, by 5.6, and so boolean
by 7.2. The converse follows from 7.2 and 4.4.

By 7.1 we can now establish the converse of 3.3. For if ¢' is n-HU
in 92, it is boolean by 7.1, and so, clearly, n-HU in #.

8. Existential formulas and ortheinjectivity. In this final section we
outline a modification of the previous techniques which will enable us
to deal with existential formulas. The basic idea is to restrict all morphisms
to be injections.

Definition 8.1. An algebra A is u-orthoinjective (where u: B — C
is a morphism) if, for every injection f: B — A, there is an injection g:
C - A with gu = f. A is n-orthoinjective if A is u-orthoinjective for all
injections u: B — ¢ with |C| <n.

Part (1) of 5.2 clearly establishes that any n-HU is n-orthoinjective.
Now we recall from Section 9.3 of [7] the notion of ewistential formula.
By replacing ‘““injective’ by “orthoinjective’” and “equation’ by ‘“‘exist-
ential formula’® many of the preceding results have natural modifications.
We shall consider the most important one only.

Definition 8.2. An algebra A is n-existentially compact if whenever X
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is a set of existential formulas over A of power less than n, and every
finite subset of X is satisfiable in A, then X is satisfiable in A.

THEOREM 8.3. Any n-orthoinjective is n-existentially compact.

Proof. By modifying 6.3, the notation of which we use. Let 4 be
n-orthoinjective. Since ¢ — A is an inclusion, there is an injection r:
B —+ A with r(¢) = ¢ for ce C. As X is satisfiable in B and existential
formulas are preserved under extension, X' is satisfiable in A.

COROLLARY 8.4. Let T be a model-complete theory. Then every n-ortho-
injective is n-elementarily compact and so n-saturated.

Proof. In T every formula is equivalent to an existential formula
(this follows from Theorem 3.3.6 of [17]).

There are two applications worth mentioning.

First, consider the variety # of boolean algebras. Let B be the 8-element
algebra with atoms a, b and ¢, and A the subalgebra of B generated by a
and bve. Let w: {0,1} - A and v: A — B be the inclusions. Then it
is easy to see that a non-trivial algebra C is {u, v}-orthoinjective iff C
is atomless. Thus any non-trivial n-orthoinjective boolean algebra is an
n-saturated model of the theory of atomless boolean algebras.

Second, let ¥ be the full subcategory of # given by the totally
ordered sets. Let B = {a, b, ¢, d, e}, where a <b<c<d<e and 4
= {b, d}. Let u: {b} — A and v: A — B be the inclusions. Then a chain ¢
is {u, v}-orthoinjective iff C is dense without endpoints. Thus an n-ortho-
injective is an n-saturated model of the theory of dense linear order without
end points.

We remark that an inductive theory with AP has enough n-ortho-
injectives for all n, by using the method outlined in 6.10.
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