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UNDECIDABILITY OF THE EXISTENCE
OF REGULAR EXTREMALLY DISCONNECTED S-SPACES

BY

ANDRZEJ SZYMANSKI (KATOWICE)

Following Rudin [5], a space is called an S-space if it is hereditarily
separable but not Lindelof. There are known examples of Hausdorff S-
-spaces, requiring nothing beyond ZFC (see [2] and [6]), but regular S-spaces
are known to exist only under additional set-theoretic assumptions:
Ostaszewski’s example under Godel’s axiom of constructibility V = L [4]
or the recent example of Juhasz et al. [3] under the continuum hypothe-
sis (CH).

In this note we consider regular extremally disconnected S-spaces.
The existence of such spaces is consistent with ZFC; Wage [7] has con-
structed an example of such a space under V = L, using Ostaszewski’s
method, and Ginsburg [1] has shown under Ostaszewski’'s (O)
that such spaces exist in each infinite countably compact ZF-space.
We give under (O’) (a condition slightly weaker than (O)), a method,
distinet from that of Gingburg [1], for a construction of such spaces in
each infinite countably compact F-space.

On the other hand, we also show that if Martin’s axiom and the
negation of the continuum hypothesis (MA + T|CH) hold, then a regular
extremally disconnected S-space does not exist. In fact, we show that,
under MA + T|CH, each regular not hereditarily Lindel6f F-space contains
an uncountable discrete subspace.

Throughout the paper, ordinals are denoted by small Greek letters,
cardinals are initial ordinals, w is the first infinite ordinal, w, is the first
uncountable ordinal, and fw is the Cech-Stone compactification of an
infinite countable discrete space. For undefined topological and cardinal
notions we refer to [5].

1. An example using (O'). Ostaszewski [4] defines (O) as follows.
Let {4,: a < w,} be the order-prescrving indexing of limit ordinals
in Wq.
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(O) There exists a family {S,: a < w,} of subsets of w, such that S,
18 a cofinal subset of A, and, if S 18 an uncountable subset of w,, then there
exists an a < w, with 8, < 8.

If V = L holds, then (O) holds; it is an easy consequence of Jensen’s
combinatorial statement . In fact, K. Devlin has proved that (O)+ CH
is equivalent to ¢, while S. Shelah has shown that (O) does not imply ¢
(see [5]).

We define (O’) by replacing in (O) the condition “8, = 8” by “|8,— 8}
< ”. Trivially, (O’) is a consequence of (0), but we cannot prove the
converse. (P 1166)

Now we show that, under (O’), fw contains an extremally discon-
nected S-space.

Assume (O’) and let {1,: a < w,} and {8,: ¢ < w,} be as in (O’).
Define {(D,, z,): a < w,} to fulfill the following conditions:

(1) D, is a countable infinite discrete subspace of fw— o and z,
is an arbitrarily chosen point from D,;

(2) if e < f < w,, then Dy < ¢l D,— D,;

(8) D, = cl{ws: & €8}

In the case of non-limit ordinal g the definition of (D, x5) fulfilling
(1) and (2) is obvious.

Now, suppose f is a limit ordinal, say f§ = 4,. Choose an arbitrary
sequence &, < &, < ... of ordinals from 8, cofinal with 4,. Then the cor-
responding sequence {z; : m < o} is discrete and all its accumulation
points are in ({clD,— D,: & < A,}. Thus it is possible to choose a discrete
infinite subset D, in ({clD;—D,;: &< i}necl{w,: n < o} which is
therefore contained in cl{w;: & €8,}.

Put X = ou{z,: a < w,}. Then X, as a dense subset of an extre-
mally disconnected space fw, is regular and extremally disconnected.

X is hereditarily separable. Indeed, if ¥ is an uncountable subspace
of X, then there exists an a < w, such that

Hog: £ €8} — Y {2,: ¢ < 0} < w.

Hence, by (3), Ycel{zr, e Y: £ < 1 }Ucl(Ynw). Let us note that
if, in addition, Y is closed, then {z; e X: £ > A,} = Y. This shows that
every closed subset of X is countable or its complement is countable.

X is not Lindelof. Indeed, {(w®—(c1D,—D,))n X: a < o,} is an open
cover of X without countable subcover.

Thus X is a regular extremally disconnected S-space. The proper-
ties stated for X imply that X is hereditarily normal, collectionwise
normal, and perfectly normal. It may be also worthwhile to point out that
the space X is scattered. Indeed, if F' « X — w is closed, then x,, where
a = inf{&: x, € F'}, is an isolated point of F.
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Remark. The construction of the space X under (O’) with the same
properties and in the same manner as above is possible in any F'-space-
which is countably compact.

2. MA 4 T|CH and vanishing spaces. A space X is said to be vanishing
if X = (J{D,: a < o}, where D, is a countable infinite discrete subspace
of X and D, c ¢l Dy;— D, whenever f < a. Clearly, every vanishing space-
is not Lindelof. So, every hereditarily separable vanishing space is an
S-space.

THEOREM 1. If Y i8 a T, not Lindelof space tn which discrete subspaces
are at most countable, then Y contains a vamishing space. .

Proof. Let {U,: £ < y} be an open cover of ¥ without countable.
subcover. There exist {D,: £ < w,} and {8;: & < w,} such that

(1) @ # D, is discrete in Y, 8; = y and |8, = » for each ¢ < w,;.

(2) Dy = | J{U,: a €8y} for each & < w,;

(3) DU\ J{U,: a8} > Y- J|U.: aelJ{8,: »< £} for each.
£ < wy;

(4) D:n\J{U,: a €85} =0 for each § < ¢ < w,.

Before proving the existence of {D,: { < w,} and {8;: & < w,},
observe that conditions (1)-(4) imply that X = | J{D,: ¢ < w,} is a van--
ishing space. Indeed, from (1) and (2) we infer that each D, is a countable.
discrete subspace of Y. So it remains to show that if a < f < w,, then.
Dy c clD,— D, (since each D, is not empty, and each D, is infinite)..
Let a< f < w,. By (3),

DU\ J{U,: 2e U8 £<a}} =T.
By (2),
D, |J{U,: 1€ 8,},
and, by (4),
DpnJ{U;: 2 e J{8,: £<a}} =0.
Hence Dy < ¢lD,— D,.
The zero-step in the inductive construction of families {D,: ¢ < w,}
and {8;: ¢{ < w,} fulfilling (1)-(4) is realized in the following way:
Choose an arbitrary point 2, from U,. Assume that points z, have:
been chosen for 1 < &, § < y. Then x, is an arbitrary point from E,,

E, = Uy—(U{Us: A< E}ucl{m: A< &},

if B, +# 0, and «is an arbitrary point defined before if E, = @.

The points {x;: £ < y} defined in such a way form a discrete subset.
of Y. To see this, let f§ < y. Put a = inf{{: z; = x5}, By the inductive
assumption,

@g =a,€ Ug— (U{Uy: § <a}ucl{my: £ <a}).
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Hence
{Z: E<a}n(U,—cl{z: & < a}) = {®} = {m}.

However, each point z, such that z, # x, and &> a lies outside
the set U, which contains U,—cl{z;: £ < a}. Hence

(Uo—olfes: & < a)nfog: £< 7} = {o5).
Since discrete subsets of Y are at most countable, the set {z.: & < y}
is countable and we put this set to be D,. Now we use D, for the definition

of §,.
Let {x', 22, ...} be an enumeration of D,. For each » < w let

a, = inf{fa < y: 2" = 2}.

Put 8, = {a,, a3, ...}. We verify that the required conditions are
fulfilled by D, and 8,.

The verification of (1) and (2) is trivial, and (4) is empty. It remains
to prove (3) which is here of the form

clD, Ul J{U,;: £€8} =Y.

Since {U,: £ <y} is a cover of ¥, it suffices to show that every
member of it is contained in clD,u | J{U,: & e 8,}.

Assume that it is not true. Then among members of that cover which
are not contained in clD,U| J{U,: & € 8,} choose the one with the mini-
mal index, say 4. Clearly, 1 ¢ §,. But this means that

Uy U{Us: E<Bucliay: £ <i} e |J{U,: & <A}uclD,.
However, by the minimality of A,
U: < clDyu| J{U,: a€8,} for each & <4,

and hence U, < clD Ul J{U;: & € 8,}, a contradiction.

Thus the zero-step is complete.

Now, let us suppose that {D,: & < a} and {8,: § < a} are defined,
where a < w,. Since | J{8;: £ < a} is countable and {U,: & < y} has no
countable subcover, the set

¥ = Y—U{U,: 1 USe: § < a)

is not empty and {U;nY’': g ey—J{8:: & < a}} is an open cover of Y'.
Then, as in the zero-step, we can find a discrete subset D, = Y’ and a
countable set 8, = y—| J{S:: £ < a} such that

Y celD,ulJ{U,: ne8;} and D,c | J{U,: ne8,}.

It is casy to verify that {D;: &< a} and {S;: &< a} fulfill (1)-(4).
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So we have the following reduction of the problem of the existence
of 8-spaces:

COROLLARY 1. There exisis a T'; S-space iff there exists a T'; heredi-
tarily separable vanishing space (i =1, 2,3, 33).

The case of regular extremally disconnected vanishing spaces will
be especially interesting for us. If MA + TJCH holds, we have

THEOREM 2 (MA+4 TICH). If X i8 a regular extremally disconnected
vanishing space, then X contains an wuncountable discrete subset.

Proof. Suppose X = (J{D,: a < w,}, where D, is discrete in X
and D, < clD,— D, for each a < § < w,. Let {4,: a < w,} be the order-
-preserving indexing of the limit ordinals in ;. Now, for each & < w,
we construct inductively a family B, with the following properties:

(1) Each R, consists of countably many subsets of (J{D,: a < 4;}
and every two distinet members of R, have finite intersection.

(2) f ¢ <n< w,, then B, c E,.

(38) ¥ Fc |J{D,: a< 2} is such that F has finite intersections
with each member of K, and with each D,, a < 4,, then F is closed and
discrete.

Let £ = 0. Then R, is defined in the following way:

Since D,,, is countable and discrete, there exists a family %, consisting
of disjoint closed-open subsets of X, which separates the points of D,,o.
Put

By = {UnU{D:: £ < wo}: Uew).

Olearly, R, has properties (1) and (2). For the proof that R, has
also property (3), let F < (J{D;: & < w,} be such that |[FnD, < w
for each ¢ < w, and |FNU| < w for each U € . From the first condition
on F we get clF —F < | J{D;: & > w,}, and thus, since F = { J {D;: ¢ < w,},
F is discrete. From the second condition on F we get cl#nD, =0.
Since

olD,, = U{De: 2w} and P c | J{D;: & < oy},

we have FnelD, =@. That is, el Fn D, =9 = FnclD, . However,
in such a situation, for countable sets in regular extremally disconnected
spaces we have clFnclD, =@. 8o, clF—F = @, which means that F
is closed.

Assume that we have defined families D, with properties (1)-(3) for
each £ < a, a < w,. Let us consider now separately the case of non-limit
and limit a.

In the case where a is a non-limit ordinal, say ¢ = #+1, we build,
as in the zero-step, the family R, for D,,  and {D, gint ® < o} and we put
R, = R;UR,;. Clearly, the family R, has properties (1) and (2). Now, if
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F < | J{D,: &£ < 4,} has finite intersections with each member of R, and with
each D,, & < 4,, then F' = F,UF,, where

F, =FaU{D: E<i} and F, = FAlU{Dy: A< &< Agpi}.

Both sets I, and F, are closed and discrete. Since they are also disjoint,
F is closed and discrete. Thus R, has also property (3).

Assume now that a is a limit ordinal. Let us put B = (J{B,: 5 < a}.
Let a family %, consisting of disjoint closed-open subsets of X, separate
the points of the set .D; . Let us choose (if it is possible) in each set
Un\U{D;: &< 2}, where U e, exactly one closed set F, which has
finite intersections with each member of the family R and the accumula-
tion point in UnD; . Then we put

R, = RU{F,: Fy #0, U e }.

Again, obviously, R, has properties (1) and (2). For the proof of
property (3), let us take a suitable F. Since FPn|{ J{D,: n < £} is closed
and discrete for each & < 4,, the structure on X assures that F is dis-
cretc and clF —F is contained in clD, . We have ¢cl¥n D; =@. For if
z eclFn 1'),1 , then we take U €  with Un D, = {x}. Since FaU is closed
in (J{D,: £ < 4,} and FNU has finite intersections with each member
of the family R and the accumulation point z, a non-empty set F also
belongs to the family R,. Since |Fn Fy| < o, the sets F' = F —F and
Fy are countable, clF'NFy; =@ = F'NnclFy, and x € clF'nel Fy;. But
this is impossible in regular extremally disconnected spaces. For the proof
of property (3), let us observe that since clD; = (J{Dg: &= 4.}, we
have FnelD, =@. Since X is regular and extremally disconnected,
clFnelD, =@ and, therefore, cl¥ —F =@, i.e. F is closed.

Thus the construction of the families {R,: a < w,} is complete.

Now, let us consider the family R = {J {B,: a < w,}. The cardinality
of R is w, and, by (1) and (2), R consists of countable subsets of the set X,
|X| = w;. Moreover, every two different members of R have finite inter-
section. Under MA + T]CH, there exists an uncountable set M < X which
has finite intersection with each member of R [7]. Without loss of generality
we may assuine that M has also finite intersection with each D,, a < w,.

The set A/ is discrete (and closed). This is a consequence of (3) and
of a special structure of X. For the proof of this fact we assume, to the
contrary, that there is ¢ € M with € cl(M —{x}). Let a be the minimal
index among those indices §{ for which x € D,. Since D, < clD,— D, for
each £ > a and D, is discrete, # is an accumulation point of the set F'
= M n|J{D;: & < a+1}, that is, F is not discrete. However, F' as a sub-
set of M has finite intersection with each member of the family R, ;
and with each D,. Thus, by (3), F is discrete, a contradiction.
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It is well known that separable subspaces of regular F-spaces are
regular and extremally disconnected. Thus, any vanishing subspace of
a regular F-space is regular and extremally disconnected. Hence, from
Theorems 2 and 1 we get the following corollary which was suggested to
the author by Jan van Mill.

COROLLARY 2 (MA 4 TICH). Any regular not hereditarily Lindelof
F-space contains an uncountable discrete subspace.

In particular, we have

COROLLARY 3 (MA + T|CH). There i8 no regular exiremally disconnected
S-space.

In [5] Rudin asks whether MA 4 T|CH implies that there is no regular
S-space. Corollary 3 gives an answer for the class of extremally discon-
nected spaces.

In connection with Corollary 2 the following problem arises:

ProBLEM (P 1167). Does there exist an uncountable hereditarily

separable and hereditarily Lindelof regular extremally disconnected
space?
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