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Imtroduction. Ward has defined the Perron-Stieltjes integral
in [11]. We have introduced the definition of the Perron-Stieltjes inte-
gral by taking into consideration w-derivative and w-measure [7]. Burkill
has defined the Cesaro-Perron integral in [2]. We have defined the Cesaro-
continuity, the Cesaro-derivative of a function relative to w. Following
Burkill, we have defined the Cesaro-Perron-Stieltjes integral. Following
Ward, Kubota [9] has defined the Cesaro-Perron-Stieltjes integral by the
help of special Denjoy integral, though he has not established any rela-
tionship between his integral and Ward’s integral. Our integral of this
paper is the direct generalization of the Perron-Stieltjes integral and the
Lebesgue-Stieltjes integral [7]. However, the integrals of Kubota and
ourselves are different. Both integrals are the generalization of the
Cesaro-Perron integral of Burkill (!). Further, we have established some
important properties of the integral which Kubota has not done and, in
particular, it is shown that if a function f(«) is non-negative and inte-
grable in our sense, then it is equal to the Lebesgue-Stieltjes (LS) integral.

1. Notation, definition and theorem. Let w(x) be a non-decreasing
function defined on the closed interval [a, b]. We extend the definition
to all # by taking w(x) = w(a) for < a and w(s) = w(b) for » > b.
Let S denote the set of points of continuity of w(#) and D = [a, b]— 8.
Let 8, denote the union of pairwise disjoint open intervals (a;, b;) in [a, b]
on each of which w(x) is constant,

SI = {al, bl, aa’ bg, ...}, Sz = SﬂSl arnd Sa = [a’ b]nS""‘(SoUS2).

Further, let S; and S; denote those points of §, which are correspond-
ingly left-end points and right-end points of (a,, b;). Jeffery [7] has
denoted by # the class of functions f(») defined as follows: f(x) is defined
on the set [a, b]N 8 such that f(x) is continuous at every point of [a, b]n 8
with respect to 8. If x, € D, then f(») tends to a limit as # tends to x,+
or x,— over the points of S. These limits are denoted by f(x,+) and f(z,—),

() Kubota has considered finite functions for the generalization.
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respectively. Also, f(#) = f(a+) for # < a and f(x) = f(b—) for > b.
The functions f(#) may or may not be defined at the points of D. Suppose
that %, = % contains those functions f(x) in # for which both f(z,+)
and f(x,—) are finite for z, € D. If a property P is satisfied at all points
of a set A except a set of w-measure zero (see [7] and [3]), then it is said
that P is satisfied w-almost everywhere in A or at w-almost all poinis of A.

Definition 1.1 (see [7] and [3]). Let f(x) belong to the class %,.
For any # and & # 0 with #+ h € 8 the function y(z, k) is defined by

( J(@+h)—f(@—)
o@+h)—o@—)’
y(@,h) ={ fl@+h)—Ff(z+)
o(@+h)—ow@+)’
\o, o(@+h)—o(@4) =0.

h>0, o(z+h)—w(@—) #0,

h<0, o@+h)—o@+) £ 0,

If y(x, k) tends to a limit as 2 — 0 (z+h € 8), then this limit is the
w-derivative of f(x) at x and is denoted by f.(z). Right-hand «-derivatives
Dtf,(xr) and D f,(x) and left-hand w-derivatives D~ f,(x) and D_f, (x)
and, finally, two-sided w-derivatives Df,(x) and Df,(x) are defined in the
usual way. Further, f_ () and f,(2) will be used to denote the left-
hand and right-hand w-derivatives, respectively, of f(z) at z.

THEOREM 1.1 (Theorem 2.3, [5]). If f(x) e %, i8 AC-w below [1] on
{a, b], then, on [a,b]NS, f(x) can uniquely be represented in the form
J(@) = ¢(2) +r(x), where p(x) is AC-o ([7], [1]) on [a, b], p(a+) = f(a+),
r(z) is continuous and non-decreasing on [a,b], and 7, (x) = 0 w-almost
everywhere in [a, b].

2. The PS-integral, () C-continuity and (o) C-derivative.

LEMMA 2.1. Let f(x) € %, be non-decreasing on each (a;,b;) < [a, b],
where w(x) is constant. If one of the four w-derivatives of f(xz) 18 non-negative
in[a, b]N 8 and if f. () = 0 for & e D, then f(x) is non-decreasing on [a, b]N 8.

The proof is similar to that of Lemma 2.12 at the end of this section.

Let f(x#) be a function (which is not necessarily finite) defined on
the closed interval [a, b].

Definition 2.1. A function M (x) € %, is said to be a major function
of f(x) on [a,b] if

(a) M(») is non-decreasing on each open interval (ay, d,) < [a, b],
where w(x) is constant,

(b) M(a—) =0,

(¢) D_M, (%) > —oco on S;US8; and D M,(x) > —oco on S;USS,

(d) M,(z) > f(#) on D, D_M,(x) > f(x) on S3U8;, and D, M, (»)
= f(») on S,US;.
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A minor function m(») of f(x) is defined in an analogous way.

By Lemma 2.1, we see that M () — m («) is non-decreasing on [a, b]N 3.
It follows that if f(#) has major and minor functions, then I(b)
= inf{M (b+)}, and J (b) = sup {m(b-+)} are finite and I(b) > J(b).

Definition 2.2. A function f(x) defined on the closed interval [a, b]

is said to be integrable in the Perron-Stieltjes sense (or to be PS-integrable)
on this interval if

(1) it has at least one major function M (x) and at least one minor
function m(z),

(2) I(d) = J(b).

If f(x) is PS-integrable on the closed interval [a, b], then the common
value I(b) = J(b) is called the Perron-Sticltjes integral (or PS-integral)
of the function on the closed interval [a, b] and is denoted by

b
(PS) [ f(@)do.

As an immediate consequence we get the following

LEMMA 2.2. If a function F(x)e€ ¥, has a finite w-derivative f(»)
everywhere in [a,b]— 8, and if F(x) is constant on each open interval
(a;, b;) = 8,, then f(x) is PS-integrable on [a, b] and

b
F(b+)~F(a=) = (PS) [ f()dw.

LEMMA 2.3. Given a set E of w-measure zero in S;U 8, and any positive
number ¢, there exists a function u(x) in the class %, such that u(x) is non-
decreasing on [a, b] and

pla—) =0, pubd+)<e,
D_p,(x2) = +00 for e ENnS;UENS;,
D p,(®) = +00 for se ENnS,UENS;.

Proof. For every natural number =, let G, be a bounded open set
such that G, o F and |G, |, < £/4". Let

0 for z < a,
(@) =11G,N[a, 2], for a<od<D,
¥alb—) for » > b.

Then the function

p@) = Yy, (2)

is in the class %, and is non-decreasing on [a, b]. Obviously, u(a—) = 0
and u(b+) < e If e E—8; and h (h > 0) is sufficiently small, then the
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whole interval [z, #+h] (z+h € 8) lies in G, for a certain fixed n. For
such an b, we have
Yu(@+h) = 9, (0) + {0(@+h) — w(2)}.
Thus
o(x+h) — ()

Hence, if & is sufficiently small and N is any positive integer, then

p(@+h)—p(»)
o@+h)—o(@) ~

This gives D _u,(#) = + oc. Similarly, we can show that if » € £ — 87,
then D_u, (#) = + oo. This completes the proof of the lemma.

Using Lemma 2.3 it can be shown that the scope of the PS- mtegral
remains unaltered if inequality (d) in the definition of the PS-major
function and the corresponding inequality for the minor function are
assumed to hold w-almost everywhere on [a, b]—&8,.

One can verify that the fundamental properties which are given
in Theorems 1, 4, 5 and 6 of Section 3, Chapter 16 in [10], are true corre-
sponding to the Perron-Stieltjes integral and w-measure. Further, if

b
(PS) [ f(2)do
exists and if a < ¢ < b, then both
c b

(PS) [ f(z)do and (PS) [ f(#)de
exist; if ¢ € (a, b)N S, then

b c b

(PS) [ fl@)dew = (PB) [ f()dw+(PS) [ f(z)do.

Definition 2.3. If the function f(x) is defined and PS-integrable
on [a, b], then the function

0 for < a,
F(@) ={(PS) [ f(t)do for a<z <D,
F(b—) for ¢ > b

is called the indefinite Perron-Stieltjes integral of f(x).
It can easily be proved that F(x) is continuous on [a, b]N S (cf. The-
orem 1, Section 4, Chapter 16, [10]).
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LEMMA 2.4. If f(®) € %, i3 AC-w below on [a, b], then

b
(L8) [ fo(@)do <f(b+)—fla—).

Proof. By Theorem 1.1, we can write f(z) = ¢(z)+r(x), © € [a, b]N 8,
where ¢(z) is AC-w on [a,d], ¢(a+) = f(a+), r(x) is non-decreasing
on [a, b], and 7,(x) = 0 w-almost everywhere on [a, b]. Also, by Theo-
rem 3 in [1], f(z) is BV-w on [a, b], and so f,(x) is summable (LS) [3],
on [a, b]. Hence

b b
(L8) [ fa(@)do = (L8) [ ¢, (2)do

=¢@(b+)—¢(a—) (Theorems 4.1 and 4.2, [6])
<fb+)—fla—).
This completes the proof.
LEMMA 2.5. If F(x) is the indefinite PS-integral of the function f(x)
on [a,b]l, then F,(s) = f(x) w-almost everywhere in [a,b].
Proof. We first show that

(1) DF,(2) > f(@)

w-almost everywhere in [a, b]. If relation (1) is not true, then there are
a positive number p and a set B < 83U D of positive outer w-measure p
such that

(2) f(@)—DF, (x)>p for all ze K.

Choose ¢ arbitrarily such that 0 < ¢ < }up and let M (x) be a major
function of f(z) such that

(3) MOb+)—F(b+)<e.

Put R(#) = M (2)— F(x). Then R(x) is non-decreasing on [a, b]NS,.
and so AC-w below on [a, b]. Hence, by Lemma 2.4 and by (3),

b
(LS)fR;,(w)dng(b+)<s.

So the set in which R, (#) > }p has w-measure less than u. Thus there
is a set E, of positive outer w-measure contained in E in which R, (x)
exists and lies between 0 and }p. At a point » of E,, f(z) < DF,(x)+ 4p,
which contradicts relation (2). Hence DF (@) > f(#) w-almost everywhere
in [a, b]. Introducing a minor function it can be proved in a similar way
that DF,(x) < f(#) w-almost everywhere in [a, b]. This proves the lemma.
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LEMMA 2.6. If a function f(x) is summable (LS) on [a, b], then it is also
PS-integrable on [a, b] and

b b
(PS) f f(®)dw = (LS) f f(#)dow.

The proof of this lemma is similar to that of Theorem 1 of Section 5,
Chapter 16 in [10].

Definition 2.4. Let a real function #(x) be defined finitely on [a, b]
and let it be PS-integrable on [a, b]. We say that F () is Cesdro-continuous
relative to o or (w) C-continuous at x, if

lim (0)C(F; 2, @+ h) = F(x,),
h—>0

zg+heS
where
(0)C(F'; 2y, @+ h)
1 F(t)dw, h>0,0(®+h)—ow(®,—) #0,
w(mo-'_h)—w(mo_)[zo.zo_*’h]
= 1
F(t)dw h<0,w(®+h)—w(@+) #0
0@+ =@+, ) . ’ ’ ° ’
F(wo+ b), (B +h) — o (1F) = 0.

We note that F(x) is (w)C-continuous at each point » e D. We denote
by %, the class of those functions F(») which have the following properties:

(i) B (o) is defined finitely on [a, b] so that F(x) is PS-integrable
on [a,b];

(ii) at each point @, of D, F(x) tends to a finite limit as x — x,+
or » — xy— over the points of the set § and at x,, F'(x) has the value
3[F(zo+)+ F (2 —)];

(iil) F(x) = F(a) for z < a and F(x) = F(b) for = > b.

Definition 2.5. Let F(z) € %,. For a point »# of the set 8 and for
b # 0 with + h € 8 the function ¢(x, k) is defined by

(0)C(F; @, ¢+ h)—F(x)
p(@, b) =1 }o@+h)—o@)} ’
0, o(@+h)— (@) = 0.

w(@+h)—w(®) #0,

If ¢(x, h) tends to a limit as h — 0 (v + h € 8), then this limit is called
the (w)C-derivative of F(x) at # and is denoted by CDF(x). Right-hand
{w)C-derivatives CD*F ,(x) and CD_F,(x) and left-hand (w)C-derivatives
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CDF,(x) and CD_PF ,(x) and, finally, two-sided (w)C-derivatives 6517'", (@)
and CDF,(x) are defined in the usual way. CDF_, (») and CDF_,(x)
will be used to denote the left-hand and right-hand (w)C-derivatives,
respectively, of F(z) at .

LemMMA 2.7. If F (o) ©8 (w)C-continuous and monotonic on the interval
{a, b], then F (x) is continuous on [a, b]NS with respect to S.

Proof. We prove the lemma by considering the case where F(x)
is non-decreasing on [a, b]. Let x € 83U 87 ; then

(L8) [ F(a+)do < (LS) [ Pt)dw, x+he8 (h>0).
[z,z+R] [z,z+h])

So F(z+) < (0)C(F; x, v+ h). Taking limits as h >0+ (z+h € 8),
we get F(»+) < F(»). Similarly, for a point x of S;US8;, we get F(x—)
> F(»). Hence F (») is continuous on [a, b]N8S with respect to 8. This com-
pletes the proof of the lemma.

LeEMMA 2.8. If the sequence of functions {s,(»)} defined on [a, b] con-
verges uniformly to 8(») in [a, b] and i3 such that, for each n, 8,(x) i8 (w)C-
continuous on [a,b], then the limit function 8(x) is (w)C-continuous on
[a, b].

Proof. Choose & > 0 arbitrarily. Fix an integer n, so that, for all »
in [a, b], |8,(®)—8(®)] < /3 if n> n, Let x, be a point of [a,b]. Then
for any such n» and for z,+% € [a, b]NS we get

|(w)0(8ni Zyy Lo+ h) — (0)C(8; 2y, Ty +h)| < &/3.
Fix an integer n > n, and then fix é > 0 such that
(0)C(8,; Toy o+ h)—8,(7,)] < €/3 1if |h] < 6 and x,+h € [a, b]N 8.
Then
[(w)C(8; @oy T+ h)—8(x)] <& if |h] < 6 and z,+h € [a, b]NS.

Hence 8(z) is (o)C-continuous on [a, b]. This proves the lemma.

Definition 2.6. Let a function g(z) be defined on a set 4 = 8,
and let x, be a point of w-density (Definition 3.1, [3]) of 4. If
limg(z) = g(,)
T
and x € A except for a set of points of w-density zero at x,, then g(x)
is said to be approzimately continuous on A at x, relative to o or w-approz-
amately continuous on A at x,.

LEMMA 2.9. If a set A c 85 is w-measurable and a function g(») is
w-measurable on A, then g(z) is w-approximately continuous at w-almost
all points of A.

The proof of this lemma is analogous to that of Theorem 5.9 in [8].
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If F(x) is in the class #,, then F(z) is PS-integrable on [a, b], and
80 w-measurable (Theorem 4.1, [3]) on [a, b]. Hence, proceeding in a way
analogous to the method of the proof of Theorem 7.1 in [8] and using
Lemma 2.9, we get

LeMmA 2.10. If F(x) is in the class %,, then the four (w)C-derivatives
of F(z) are w-measurable on [a, b]NS.

LeMMA 2.11. Let F(x) € %, be such that, at every point x; of the set D,
F(x;) = 3[F(z;+)+ F(2;—)].
Then F(x) belongs to the class %, and i8 (w)C-continuous on [a,b]— D.

Further
CDF_,(x) = F__ () for x e S3uUS8;,

CDF () = F' () for x e 83U8F

provided the right-hand members exist.

Proof. Since the function F(x) € #,, F(x) is w-measurable on [a, b].
Further F(x) is bounded on [a, b], and so it is8 summable (LS) on [a, b].
So F(x) belongs to the class #,. Let z, € 8,U8;: Then for ¢ > 0 chosen
arbitrarily we can find a point ' (2’ > z,) of § sufficiently close to @,
such that, for all » € (x,, 2']N S,

F(2y) — e < (0)C(F; 29, @) < F(2) + €.
Hence
lim (w)C(F; xy, ) = F(z,).

Z—DZO +
zeS

In a similar way we can show that for a point z, € 83U S8;

lim (w)C(F; ®y, 3) = F(w,).
T—+xo—
zeS

Now, F(x) is (w)C-continuous on [a,d]—D. If aeSUST and
F’, ,(») is finite, then for a point e, (a, > a) of § sufficiently close to @
and for all # in (a, a;]N S we have

F(x)— F(a)

w(m)_w(a) _F+w(a) < L)

where ¢ > 0 is arbitrarily small. Then
(0)C(F; @, 3) — F(a)
—E
}{o(2) - w(a)}
which shows that
(4) CDF, ,(a) = F'u(a).

—F’-l-m(a) < &,
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If ¥, ,(a) is infinite, then in a similar way we can show that CDF (a)
is infinite and that (4) holds. Similarly we can show that if 8 e 8,U 87,
then CDF__(B) = F_,(B). The proof of the lemma is mow complete.

LEMMA 2.12. Let F () € U, be such that

(i) F(x) 48 (w)C-continuous on [a,b]—D;

(ii) F(») s non-decreasing on each (a;, b;) = Sy;

(iii) CD_F,(®) = 0 for @ € 83U8];

(iv) F(z;+) = F(v;,—) for every »; € D.

Then F(x) i3 mon-decreasing on [a, b].

Proof. Let 8 (8> a) be any point of the interval [a, b]. Choose
€ > 0 arbitrarily. Then

(®) (@)C(F; 6, 3)— F(a) > — - [0(a) — w(a)]

(the strong inequality holds if a e DU S;U 8 ) for all z € (a, 2,]N 8, 'where Ty
is sufficiently near to a. Then in every neighbourhood on the right of a
we can find a point # of § such that

(6) F(z)—F(a) > —e[o(r)—w(a)].
If relation (6) does not hold for a e DUS,;US;, then there exists
a point z; (a < @, < x,) of S such that for all z in (a, @,]
F(z)—F(a) < —e[@(2) — wfa)],

where @(2) = w(2) if xe€ 8 and o(2) = }ow(@+)+t ow(@—)] if 2zeD. In
that case

1 ¢
(@)O(F; 8, 0)—F(a) =~ f [F (1)~ F(@)]de
€ 5 : &
<~ e f [@(1)— o (@)]do = - [0(@) - (@)],

which contradicts (5). Thus we can find a point s, of § sufficiently near
to a (w, > a) such that

(M F(a)—F(a)> —elw(@;) —o(a)],
(T') ()O(F; a,8))— F(a) > — —[0(@) — w(a)].

Similarly we can find a point #, (#, > «,) of § near to », such that
(8) F(@,) — F(2,) > —e[w(®s) —o(@)],

(8 (@) O(F; 31, 23) — F (@) > — - [0(@) — 0(a,)].
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Proceeding in this way we obtain a strictly increasing sequence {w,}
from 8 which tends to a limit &. Let x, be any point of the sequence.
Then

(9) F(x,)—F(a) > —elo(@,)—w(a)],

(10) (0)O(F; Ty ) — F (@) > — - [0(@,) — 0 (9,)].
From (9) and (10) we get
(11) (0)C(F; T, @) — F(@) > —2[0(an) — 0(a)] - — [0(3,) — 0 (am)]-

If £ € D, then by taking m — oo in (9) we get

F(§—)—F(a) = —¢[w(é—)—ow(a)],
and 8o
F(§)—F(a) > —e[w(8)—w(a)].

Next suppose that & e 8; then from (11) we get, keeping =, fixed,
(@) O(F; @, §)—F(a) > —s[0(@n) — 0(@)] = [0(£) — 0 (@n)].

Since F (») is (w)C-continuous at &, making m — oo we get
F(§)—F(a) > —e[w(é)—w(a)].

If £ < B, then we cover the interval [a, 8] by a Lebesgue chain and
thus obtain

F(B)—F(a) = —e[w(f)—w(a)].
Since ¢ > 0 is arbitrary, this relation gives F(g8) > F(a), which proves
the lemma.
3. Major and minor functions and the CPS-integral.

Definition 3.1. Let a function f(x) be defined (not necessarily finite)
on [a, b]. Then M(x) € %, is said to be a CPS-major function of f(z) on

[a, ] if
(a) M () is (w)C-continuous on [a, b]— D,
(b) M(a) =0,

(c) M (wx) is non-decreasing on each (a;, b;) = S,,

(d) CD_M,(#) > —oo for e S8;u8; and CD, M, (x) > —oco for
z-€ 8,V 8,

(e) CD_M (@) = f(x) for xzeSu8; and CD M,(v) > f(x) for
x e S;USy,

(f) M(x;+)—M(»;—) = f(z;)[wo(® +)—ow(p;—)] for every x;e D.

A CPS-minor function m(x) is defined in an analogous way.

THEOREM 3.1. If M (x) is a CPS-major function and m(z) is a CPS-
minor function of f(z) on [a, b], then the difference R(z) = M (z) — m (@)
18 non-decreasing on [a, b].
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The theorem follows from Lemma 2.12.

If f(#) has CPS-major and CPS-minor functions, then I,(b) = inf{M(b)}
and J,(b) = sup {m(b)} are finite and I,(d) > J,(b).

Definition 3.2. A function f(x) defined on the closed interval [a, b}
is said to be integrable in the Cesaro-Perron-Stieltjes semse (or to be CPS-
integrable) on this interval if

(1) it has at least one CPS-major function M (x) and at least one:
CPS-minor function m(x);

(2) Iy (b) = Jo(b).

If f(2) is CPS-integrable on the closed interval [a, b], then the common
value I,(b) = J,(b) is called the Cesaro-Perron-Sticltjes integral (or CPS--
integral) of the function on the closed interval [a, b] and is denoted by

b
(OPS) [ f(2)do.

4. Properties of the CPS-integral. A direct consequence of the defi-
nition of the CPS-integral is the following

THEOREM 4.1. Let a function F(x) € %, have a finite (w)C-derivative
f(@) at all points of [a, b]NS — 8,. If F (x) is constani on the intervals of S,US,.
and if

F(z;+)—F(z;—) = f(@;)[0(0;+) —w(2;—)] for every »; € D,
then f(») is CPS-integrable on [a, b] and

b
(CP8S) f f(z)dw = F(b)—F(a).

In place of the function ux(x) considered in Lemma 2.3 we now consider-
the function #(®») such that

_«_ }u@+)=p@—)] i weD,
B (@) —{,u(w) if ve 8.

By the help of Lemmas 2.3 and 2.11 it can now be proved that the
scope of the CPS-integral is unaltered if inequalities (e) in Definition 3.1
of the CPS-major function and the corresponding inequalities for the CPS-
minor function are assumed to hold w-almost everywhere in [a, 5]NS —8,..
As an immediate consequence we get the following

THEOREM 4.2. If a function f(xz) is CPS-integrable on the closed interval
[a,b] and if g(x) = f(x) w-almost everywhere in [a, b], then g(x) i8 also-
CPS-integrable on [a,b] and

b b
(OPS) [ g(@)dw = (CPS) [ f(w)dw.
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We observe that the CPS-integral is generalization of the PS-inte-
gral, and so of the LS-integral [7]. Obviously, it is also generalization of
the CP-integral [2], the P-integral and the L-integral. The next four
theorems follow very simply from the definition of the CPS-integral.

THEOREM 4.3. If each of the functions f,(») and f,(x) is CPS-integrable
-on the closed interval [a, b], then their sum is also CPS-integrable on this
tnierval and

’ b b b
(CPS) [ [f,(®)+f(2)1dw = (CPS) [ f,(s)dw + (CPS) [ f,(2) do.

THEOREM 4.4. If f(xz) 48 CPS-integrable on [a, b] and K 18 a finite con-
8tant, then the function K f(») i8 also CPS-integrable on [a, b] and

b b
(CPS) [ Kf(#)dw = K(CPS) [f(@)do.

THEOREM 4.5. If f(w) is CPS-integrable on the closed interval [a, b]
and if a < ¢ < b, then f(») is CPS-integrable on each of the intervals [a, c¢]
and [¢,b] and :

b c b
(CPS) [ f(@)do = (CPS) f f(#)dw + (CPS) f f(#)dw.

THEOREM 4.6. A CPS-integrable function f(®) is finite w-almost every-
where in [a, b].

Definition 4.1. If the function f(x) is defined and CPS-integrable
on [a,b], then the function

0 for v < a,
F(z) = {(CPS) ff(m)dw for a<ao<b,

F(b) for ¢ > b

is called the indefinite Cesaro-Perron-Stieltjes integral of f(x).

THEOREM 4.7. The indefinite Cesdaro-Perron-Stieltjes integral of f(x)
18 (w)C-continuous on [a, b].

The theorem can be proved by the help of Lemma 2.8.

THEOREM 4.8. If f(») is CPS-integrable on [a, b], F(z) is its indefinite
CPS-integral and M (v) and m(x) are a CPS-major function and a CPS-
minor function of f(x), respectively, then each of the differences M (x)— F (x)
and F(x) —m(x) is non-decreasing on [a, b].

The proof is simple, and so is omitted.

THEOREM 4.9. If F(x) is the indefinite CPS-integral of the function f(x)
defined on [a, b), then

CDF,(») = f()
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w-almost everywhere in [a, b]1NS. Purther, for each », € D
F(z;+)—F(2,—) = f(z)[0(2,4)— o(5;—)].
The proof of the first part of this theorem is exactly alike to that

of Lemma 2.5. The second part follows directly from the definition of
OPS-major and OPS-minor functions.

COROLLARY 4.1. If f(x) 18 CPS-integrable on [a,b], then f(x) ¢8 w-
measurable on [a, b].

The corollary follows from Theorem 4.9 and Lemma 2.10.

THEOREM 4.10. If f(x) is8 non-negative and CPS-integrable on [a, b],

then f(z) i8 summable (LS) on [a, b] and
b b
(L8) [ f(@)dow = (CPS) [ f(2)dw.

Proof. Let M(z) be a CPS-major function of f(x) on [a,b]. By
Lemmas 2.7 and 2.12, M(2) is in the class %, and AC-» below on [a, b].
Since M, () > f(x) w-almost everywhere in [a, b]—8,, f(z) is summable
(LS) on [a, b] and

(L8) f f(@)dw < (LS) f M. (#)do < M(b+) (by Lemma 2.4)
= M(b).
Since this is true for any CPS-major function M (z), we have
b b
(12) (L8) [ f(#)dw < (CPS) [ f(2)dw.

Again, if M (x) is an LS-major function (Definition 2.1, [6]) for the
given function such that M(w) = }[M(x+)+M(z—)] at points of D,
then M (@) is also a CPS- major function, and so

(13) (LS) f f(#)dw > (OPS) f f(®)do.
Combining (12) and (13) we get

b
(LS) f fl@)do = (CP8) [ f(z)dw.

This completes the proof of the theorem.

THEOREM 4.11. Let a sequence of functions fy(®), fo(@)y ..oy fol@)y ..oy
converging pointwise to a function f(x) be defined on [a, b). If, for all n and =
in [a, b], 9(2) < [, (@) < h(x), where g(x), f,(x) and k() are all CPS-integradle
on [a, d], then f(x) 48 CPS-integrable on [a, b] and

b

b
lim (CPS) [ f,(2)dw = (CPS) f f(z)dw.

8 — Colloquium Mathematicum XL.2
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Proof. Put ¢,(9) = f,(@)—g(a), ¢(@) = f(2)—g(a), 3nd p(@) = Wa) —

— g(@). Then ¢,(v) and y(x) are non-negative on [a, b] and so, by Theo-
rem 4.10, they are LS-integrable on [a, b]. Since 0 < ¢, (?) < y(#) and
a<o<b, we get

b b
lim (L8) [ ¢,(2)do = (LS) [ p(#)dw.

Hence we obtain

b b
Hm(CPS) [ f,()dw = (CPS) [ f(a)dw.

This completes the proof of the theorem.
I am grateful to Dr. M. C. Chakraborty for his kind help and sugges-

tions in the preparation of the paper.

1]
(2]
(3]
(4]

[5]
(6]

(7]

[8]
(9]

[10]
[11]

REFERENCES

P. C. Bhakta, On functions of bounded w-variation, II, Journal of the Aus-
tralian Mathematical Society 5 (1965), p. 380-387.

J. C. Burkill, The Oesdro-Perron tntegral, Proceedings of the London Mathe-
matiocal Society 34 (2) (1932), p. 314-322.

M. C. Chakraborty, Some results on w-derivatives and BV -w functions, Journal
of the Australian Mathematioal Society 9 (1969), p. 345-360.

— Bome results on AC-w functions, Fundamenta Mathematicae 64 (1969),
P. 219-230.

D. K. Dutta, On functtons AC-w in one sense (unpubhshed)

— Upper and lower Lebesgue-Stieltjes integrals, Fundamenta Mathematicae
87 (1975), p. 121-140.

R. L. Jeffery, Generalised integrals with respect to functions of bounded variation,
Canadian Journal of Mathematics 10 (1958), p. 617-628.

— The theory of functions of a real variable, University of Toronto Press 1962.
Y. Kubota, The Oesdaro-Perron-Stieltjes integral, I, Proceedings of the Japan
Academy 42 (1966), p. 605-610.

I. P. Natanson, Theory of functions of a real variable, Vol. 1I, New York 1955.
A. J. Ward, The Perron-Stieltjes integral, Mathematische Zeitschrift 41 (1936),
p. 578-604.

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF KALYANI -
KALYANI, NADIA, WEST BENGAL

Regu par la Rédaction le 27. 9. 1976



