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EXTREME CONTRACTIONS ON CERTAIN FUNCTION SPACES

BY

A. IWANIK (WROCLAW)

1. Introduction. Throughout this paper we assume that X and Y
are compact Hausdorff topological spaces and Y is Stonian (i.e. ex-
tremally disconnected). We denote by C(X) and C(Y) the corresponding
Banach lattices of real-valued continuous functions. Since C(X) is order
complete, the Banach space & (C(X), C(Y)) of all continuous linear opera-
tors from C(X) into C(Y) is a Banach lattice under its canonical ordering
(see [7], I1.7.7 and IV.1.5).

Let us consider the unit ball U in £(C(X), C(Y)). Elements of U
are called contractions. A contraction T' e U is said to be nice if its adjoint T
takes Dirac measures on Y into extreme points of the unit ball in C(X)’.
If T is nice, then its adjoint is extreme in the unit ball of Zz(C(Y), C(X))
and all the more so 7' is extreme in U. In [8] Sharir has shown the reverse
implication: any extreme contraction is nice (see also [2] for a shorter
proof). A report on related results can be found in [9].

The aim of this note is to present another proof of Sharir’s theorem
(Section 2), to prove a similar result for order continuous operators (Sec-
tion 3), and to characterize the extreme contractions on abstract Lebesgue
spaces (Section 4). Our approach differs from that of [8] and [2] in that
it uses the Banach lattice techniques for 55’(0 (X), 0(Y)), avoiding the
Stone-Cech compactification. Also, by reducing the problem to positive
operators we obtain new equivalent conditions for a contraction to be
nice, expressed in terms of its positive and negative parts (Theorem 1).
The argument is then modified in Section 3 to obtain a characterization
of order continuous contractions on hyperstonian spaces.

After having submitted the first draft of the paper the author learned
that a similar idea was recently used by Choo-whan Kim [1] in charac-
terizing the extreme contractions on [® and I'. Theorems 1 and 2 of [1]
can be deduced from our Theorems 1 and 2, and a result of Phelps ([5],
Theorem 2.1).

The author wishes to thank Dr. Z. Lipecki whose advice and sugges-
tions improved considerably the text.
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2. Extreme contractions.

LEMMA 1. Let Te U satisfy 0 <Tt1(y) <1l and 0< T 1(y)<1
Jor some element y in Y. Then there exist two conitractions 8, # 8, with
1841y 183l < 2|T| and T = (8,4 8,)/2.

Proof. By the assumption and Urysohn’s lemma there exists a con-
tinuous function 0 < w <1 on Y such that w(y) >0 and (1+w)T*1 < 1.
Letting v = wT~"1 and v = wT*1 we get

L+u)TTAAF )T~ <2T*A2T" =0.
Now put
8, =QL+u)T*—A—v)T- and S, =@1—-w)T*—(1+2)T".

Clearly, T = (8,+ 8;)/2 and |8;| < 2|T|. The 8; (¢ = 1, 2) are contrac-
tions since

I8l = NI8ylll = 1i8yILl = (A +w)T*+(1—2)T7)1|| = NITILI <1
and, analogously, [|S;/l < 1. Finally, 8, # 8, since
811(y) —8:1(y) = 4u(y)T1(y) + 0.

LEMMA 2. If TeexU, then |T|1 = 1.

Proof. We have |T|1(y) = 0 or 1 for all ¥y € Y, since in the contrary
case there would exist a function 4 e C(Y) with 0<% <1 and % #0
such that (14 %)|T|1 <1, implying

IALu)Tl = IL+w) | TAI<1

and, consequently, T' ¢ ex U, a contradiction. Now we show that |T|1 = 1.
Indeed, suppose that the closed and open set ¥, = {y ¢ Y: T1(y) = 0}
is non-empty and denote its characteristic function by y. For any func-
tional 4 on C(X) with 0 < ||lu]| <1 we have a non-zero operator u®y:
C(X) > C(Y) defined by (#®x)f(®) = <u,f>2(y). Since |Tf|< |TIf
< Ifl1T|1 for any positive f in C(X), we have Tf(y) = 0 whenever y € Y,.
Therefore, T4+ u @ x|l < 1, contradicting T eex U.

Let P be the convex set of all positive contractions in & (C(X), C(X)),
and P, its subset consisting of all positive contractions which take 1
into 1. Let us recall the well-known characterization of exP,, valid for
arbitrary compact Hausdorff spaces X and Y (see [3], [6], Theorem 2.1,
and [7], II1.9.1 and 9.2): —

(0) T e exP, if and only if there exisis a continuous map ¢: Y - X
such that Tf(y) = f(p(y)) for all f € C(X) and all y € Y.

The essential part (i) <> (v) of the forthcoming theorem is due to
Sharir ([8], Theorem 2).
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THEOREM 1. For any T € £ (C(X), C(X)) the following conditions are
equivalent:

(i) TeexU;

(ii) T* eexP and |T1| = 1;

(iii) |T| e exPy;

(iv) there exist & fumction r e C(Y) with |r]| =1 and a continuous
map ¢: Y — X such that Tf(y) = r(y)f(p(y)) for all fe C(X) and ally e Y ;

(v) T 8 nice.

Proof. (i) = (ii). By Lemmas 1 and 2, T*1 are characteristic functions
and {supp 7*1, supp T~1} is a partition of Y into two closed and open
subsets. Suppose, say, that Tt = (8,+8,)/2 for some §; e P. We have
8; < 2T*, so that

S‘/\ T_ = O and "S‘—T—“ - "S{""'T—" == llSil+T—1"<1‘

Since T = ((8,—T7)+(8,—T7))/2, we must have §;, = §,. Analo-
gously we show 7~ eexP.

(ii) = (iii). Arguing as in the proof of Lemma 2 we see that any oper-
ator from exP maps 1 into a characteristic function in C(Y). Therefore,
T#*1 are characteristic functions and we have

1>|T|]1 =T*1+T1>|T1] =1.
It follows that if 8; e P and |T| = (S;+ 8;)/2, then
T* = ((Til)sl'l‘(Til)Sa)/z’

so that (T*1)8; = T*. Hence 8; = |T|.

(iii) = (iv). For any § € £ (C(X), C(Y)) and y € ¥ we define a contin-
uous linear functional 8’(y) on C(X) by the formula 8'(y)f = 8f(y).
Clearly, 8’(y) = 8'4,, where J, denotes the Dirac measure concentrated
at v.

By (o) there exists a continuous map ¢: Y — X such that |T|f(y)
= f(p(y)) for all f € C(X) and all y € Y. In particular, |T|'(y) is the Dirac
measure d,, for each y e Y. Denoting by |T'(y)| the modulus of T"(y)
in the Banach lattice 0(X)’, we have |T’(y)| < |T|’ (y), so that there exists
a real number r(y) with [r(y)I<1 and T'(y) = 7(y)d,,,). Therefore,
Tf(y) = r(y)f(p(y)) for all f e C(X). Letting f = 1, we get r = T1 € C(X).
Since |Tf| < Ir||T|f for all f e C(X), f> 0, we have |r| = 1.

(iv) = (v) = (i) are obvious.

By the Stone-Weierstrass theorem, for each z e X the functions
f e 0(X) satisfying ||f|l <1 and |f(x)] =1 form a linearly dense subset
of ¢(X). Thus any operator of the form (iv) necessarily satisfies

(vi) for each y € Y the set {f € C(X): |fI<1 and Tf(y) = 1} 8 line-
arly dense tn 0(X).
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This apparently weak condition is, in fact, sufficient for a contrac-
tion T to be of the form (iv), as follows from Theorem 2 of [6], where this
result is proved in a more general setting.

3. Order continuous contractions. Throughout this section we assume
that X and Y are hyperstonian spaces, which means that the Banach lat-
tices #"(X) and A7 (Y) of all order continuous Radon measures on X and ¥,
respectively, separate C(X) and C(Y). The latter spaces can now be
viewed as dual Banach lattices of A#°(X) and A#°(Y) (see [7], I1.9.3). The
space & (A" (Y), # (X)) is a Banach lattice under its canonical ordering
([7], IV.1.b (ii), ITT.11.4, and IL.8.5).

Let us recall that a net (f,) in C(X) order converges to f if and only
if there exists a downward directed family (g,) in C(X) such that

|fa —fl < Ga and infga =0

(cf. [7], I1.1.7 and II, Exercise 2 (a)). An operator T: C(X)— C(X)
is said to be order continuous if (T'f,) order converges to 7' f whenever (f,)
order converges to f (see [7], I1.2.4). We denote by %, the set of all order
continuous operators in £(0(X), C(Y)).

LEMMA 3. Let X and Y be hyperstonian spaces. Then the set £, forms
in the space & (C(X), C(Y)) an ideal which is Banach lattice isomorphic to
Z (N (X), # (X)) under the mapping 8 — §'.

Proof. First we show that 8’ is in ¥, whenever 8§ is a positive op-
erator in Z (#'(Y), # (X)). Indeed, let (f,) and (g,) be such as in the defi-
nition of order convergence. The family (8’g,) is also downward directed
and C(Y) is order complete, so there exists A = inf8’g, in C(Y). Now,
for any positive functional » in A#°(Y) we have

vy h) = infl{v, §'g,> = inf{8»,g,) =0,

whence 2 = 0 and 8’ is order continuous.

Since the sum of two order continuous operators is itself order con-
tinuous, %, is a vector subspace of £ (C(X),C(Y)). Since, moreover,
& (.4" (Y), # (X)) is a vector lattice, we infer that all operators of the form 8’
are in %,. Conversely, if T € &,, then T' takes #°(Y) into 4" (X), so that T
is the adjoint of the restriction S of T' to A" (X). So far we have shown that
T e #(0(X), C(Y)) is order continuous if and only if it has a pre-adjoint.

Clearly, the map § — 8’ is a linear isometry. In order to prove that
it is a Banach lattice isomorphism it suffices to show that |8'| = |8/
for any 8 € £(A#°(XY), #'(X)). The obvious inequality |8| > + 8 implies
18]’ > 4 8’, whence |S|" > |8'|. By the last inequality, |§'| is order contin-
uous along with |8|’, whence, by the first part of the proof, |8'| = 8,
for some positive operator §,. This implies +8 < §,. By taking the
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second adjoints and restricting them to A4°(Y), we obtain +8 < §,, so
that |8]< 8, and |8]'< 8, = |§'].

To conclude the proof we note that if a positive operator T, is in &,
and an operator T in £(C(X),0(Y)) satisties |T|<T,, then T e %,.
Hence %, is an ideal in £ (0(X), C(Y)).

Let X and Y be hyperstonian spaces. We denote by U, the set of all
order continuous contractions in & (C(X), C(X)).

PROPOSITION. ex U, = Uynex U.

Proof. We only need to show that ex U, — ex U. Taking u in the
proof of Lemma 2 to be order continuous, we can see that the lemma
still holds under the assumption T € ex U,. Also, in the proof of (i) = (ii)
of Theorem 1, the contractions S; satisfy |S;| < 2|7, so that they are order
continuous if 7T is (by Lemma 3). Hence we obtain (ii) of Theorem 1 pro-
vided that T e ex U,. Therefore, T € ex U, implies T e ex U.

The following corollary is a consequence of Theorem 1 and the Pro-
position.

COROLLARY. Let X, Y be hyperstonian spaces and let T € £(C(X), C(Y)).
Then T eexU, if and only if there exist a function r e C(Y) with
Ir} = 1 and a continuous open map ¢: Y — X such that Tf(y) = r(9)f(p(¥))
for all feC(X) and all ye Y.

Proof. By [7], II1.9.3 (where % and v are the constant one functions),
the operator of the form f— fog is order continuous if and only if ¢ is
an open map. Hence the assertion follows from the equivalence (i) < (iv)
of Theorem 1 and from the Proposition.

4. Contractions on AL-spaces. A Banach lattice E is called an AL-
space (abstract Lebesgue space) if the norm in F is additive on the positive
cone. By the Kakutani representation theorem, each AL-gpace is isomorphic
to L'(u) for some positive Radon (not necessarily bounded) measure u
on a locally compact space. Another representation theorem asserts that E
can be identified with the lattice .#°(Y) of all order continuous Radon
measures on a (unique up to homeomorphism) compact hyperstonian
space Y (see [7], I1.8.5 and 9.2).

Let now F and F be AL-spaces, and Y and X the associated hyper-
stonian spaces. Denoting by V the unit ball of ¥ (E, F) we have, in view
of Lemma 3, V' = U, and, as a consequence of the Proposition, (exV)’

=ex U, = V'nexU. Thus, the Corollary gives a characterization of
extreme contractions on AL-spaces in terms of their adjoints acting
between the corresponding spaces of continuous functions. In measure
theory, however, where AL-spaces usually occur as concrete L'-spaces
for o-finite measures, it seems more natural to identify the duals of ¥
and F with the corresponding L*-spaces rather than the spaces of con-
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tinuous functions. Unfortunately, in that case the representation of an
extreme contraction 7' € Z (E, F') by means of a measurable transformation
@ is not always possible, as is shown by the following example, commu-
nicated to the author by Professor 0. Ryll-Nardzewski.

Example. Let 4 be the Haar measure on the (multiplicative) circle
group I' in the complex plane. There exists a non-measurable subset Q,
of I" such that

@NQ, =9, QuQ, =TI, and i*'(Q) =2*(Q,) =1,

where @, = {#el: —z2€eQ,}. Let F = L'(A) and F; = L'(u,), where g,
is the restriction of A to @; (¢ = 0, 1). We denote by I, the canonical iso-
morphism from E’ = L*(4) onto L*®(u;) defined by I.,f = f|Q;. Let 8
be the Banach lattice automorphism of E’ defined by 8f(®) = f(—=).
The composition I,8I; !, being an automorphism of Fy, is an extreme
contraction (by the Banach-Stone theorem and (iv) = (i) of Theorem 1).
Since it is also order continuous, by Lemma 3 we have I,8I;! = T for
some extreme contraction T; in & (F;, F;). Now we show that T, is not
induced by any measurable transformation of @,. Indeed, if T, were in-
duced by ¢,, then, by the symmetry, T, would be induced by a transfor-
mation ¢, of @,. Then » —» (g,Ve,)(#) and # - —» would induce the same
automorphism S of E’, which is a contradiction, since ¢;(») # — # for
all v el

Nevertheless, the following result is valid:

THEOREM 2. Let (Q, 2, u) be a o-finite measure space and let v be
a o-finite Borel measure on the real line R. Then T € & (L' (u), L'(v)) i8 an
extreme contraction if and only if there ewist r € L™ (u) with |r| =1 and
a non-singular measurable transformation ¢: @ — R such that the adjoint T’

of T is of the form
T'f(y) =r(@)f(p¥)) a.e. for all fe L (»).

(Here non-singular means »(B) =0 = u(¢p~!(B)) = 0.)

Proof. Let X and Y be the associated hyperstonian spaces of F# = L'(v)
and F = L'(u), respectively.

Sufficiency. The non-singular transformation ¢: @ - R induces
an order continuous Banach lattice homomorphism T,f = foe from
L®(v) into L®(u). The Banach lattices L™ (») and C(X), as well as L™ (u)
and C(Y), are canonically isomorphic (as dual Banach lattices of F and E,
respectively), hence to T, there corresponds an order continuous Banach
lattice homomorphism 7T, € & (C(X), C(Y)). In view of [7], II1.9.1 and 9.3,
T, is induced by a continuous and open map ¢,: ¥ — X. Also, to r
there corresponds a function r, in C(Y) with |r,] = 1. By the Corollary,
the operator T',f = ro(fog,) i8 an extreme order continuous contraction
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in £ (0(X), C(Y)). We can identify T, with T’ so, by Lemma 3, T is an
extreme contraction in Z(E, F).

Necessity. By Lemma 3, T’ is order continuous. Hence, in view

of the Corollary, T’ = rP for some order continuous P e & (L™(»), L*(u))
with |Pf| = P|f| and P1 = 1. Now we apply Lemma 3 in [4].
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