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1. Introduction. An n-dimensional (n» > 3) Riemannian manifold
(not necessarily of definite metric form) is said to be conformally symmetric
[1] if its Weyl’s conformal curvature tensor

(1) Chijk = Rh{jk—

1
o (95 R —ga B+ 4 R;— 8] Ry) +

h h
+ (n—1)(n—2) (Bkges — 8j 9:)

gatisfies the condition
(2) iy =0,

where the comma indicates covariant differentiation with respect to the
metric.

It follows easily from (1) and (2) that every conformally flat (n > 3)
a8 well a8 every locally symmetric Riemannian manifold (n > 3) is necessa-
rily conformally symmetric. The converse of this is, in general, not true
([4], Theorem 1).

Let M be a Riemannian manifold of class C* with not necessarily defi-
nite metric form, dim M > 3. A (1, 3)-tensor B of class C* (with components
B*,,) will be called a generalized curvature tensor on M (see [3] and [7]) if

(3) B+ B, +B"%; =0 (the first Bianchi identity),
(4) By = —B%y,  Buir= B
where By, = gpi By -
The tensor B is said to be proper if it satisfies the second Bianchi
identity
B+ B+ Bty = 0.
For every generalized curvature tensor B there is a natural decoin-
position
B(1)+B(2)+B(3) = B,
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where

B(l)hijk = 8(g 52 —Gix 6,’-') )

1
n(n—1)
1
B2y = g By 8 — By 8] + 9y B — 90 B") +

2
+ W:Z—) S(9u 5}‘ — G &),

1
B(3) 'k = B+ ——5 (] Bu— 6 By+9u By — 9y B") +

1 n n
+ n—1)(n—2) 8(94 0 — 9u %),

and where B; = B";, are the components of the Ricci tensor Ric(B),
and 8 = 8(B) = B, is the scalar curvature of B. B(3) is called the Weyl
conformal curvature tensor of B.

One can easily verify that for a proper generalized curvature tensor B
the relations

1
(5) Bfijk.r = Bij,k_Bik,j’ Brj.r = ? S.j

hold.

Tanno proved, generalizing a result of Glodek ([2], Theorem 2),
the following remarkable

THEOREM A ([8], Theorem 6). A connected conformally symmetrw
manifold (not necessarily of definite metric form) is conformally flat or its
scalar curvature 18 constant.

The author obtained the following results:

THEOREM B ([5], Theorem 1). Let M be a connected conformally sym-
metric manifold (not necessarily of definite metric form), dim M > 4. Then
its Weyl’s conformal curvature tensor C ts null (z e. <C,C>=0)on M Or
M is locally symmetric.

THEOREM C ([6], Theorem 2). Let M be a comnected Riemannian
manifold (not necessarily of definite metric form) whose Ricci tensor satisfies
the condition

1
(6) Rijr—Ryyy = —— (B 95— R ;94).

2(n—1)
If B is a parallel generalized curvature tensor on M, then the scalar
curvature of M s constant or B = B(1) and B(2) = B(3) = 0.
The main aim of this paper is a generalization of Theorem B. More
precisely, we shall prove the following
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THEOREM. Let M be a connected conformally symmelric manifold (not
necessarily of definite metric form), dim M > 4. If B is a parallel generalized
curvature tensor on M, then M ¢s locally symmetric or

{(B—B(1),B—B(1)) =0 on M.

All Riemannian manifolds under consideration are assumed to be
connected and of class C®. Their metric forms, unless stated otherwise,
are not necessarily definite.

2. Preliminary results. We start with the well-known lemma.
LeEMMA 1. The Weyl conformal curvature tensor satisfies the relations
(7) Chipe = —ka = —Chig = Cjeni C'ijr =0 = Cor =0,
(8) Cr+ Cis+ ey = 0,
n—3

O Oy = g [Bur—Ru -

1
=) (B x9y—R; !hk)] .

LEMMA 2. Let M be a conformally symmetric manifold of constant
scalar curvature, dim M > 4. If B i3 a parallel generalized curvature tensor
on M, then the relations

1
(10) er.pBrIc = WSka,zn
rs 1
(11) .R ,pBrija = n—(l—_n)SRij’p
hold.

Proof. Since B is parallel on M, we have
Bhijk,lm_Bhijk,ml = 0’
whence, because of the Ricci identity,
(12) B, ijx B him.p + Bhest B tm,» + Bririe B jim,p + Bhije B'iam,p = 0.

The last equation, in view of
1
(13) Blip = ——5 5B p— 90’5+ 5By p— 8 Ba ),

which is a consequence of (2) and R = const, implies
(14) B p B iji — Gnm Bt p B ijie + By p Bisie — B, p Brigr, +
+9a By p B ki — Gim Bt p B'hri + Rt p Bunei — Rim, p Bin +
+ Git B, p B icni — 94m Bt p B ks + Bt p Buieni — Rjm,p Bini +
+ 011 Brm,p B jin — Gim Byt p B jin, + Byt p Bmji — B p By = 0.+



48 W. ROTER

Contracting (14) with ¢ and making use of (3), we get
(18)  (n—2)RB,p p Bsji +Bpi,p B mjic + Brj p B imic + B, p B iym +
+ 9im B, Brris — 9im B 3, Brjis + Bjpy p Bii — By p By = 0.
The last relation, in view of
(16) Rij,k = Rik,j’
which follows easily from (2), (9) and B = const, can be written as
(17) (n—2)R,, 2B iyx+ Ryp i B jic + Ry i B it + B,y Bijm +
+ 9By e B iei’ — Gim Bep s B'3i" + Ry Bri — Bym p Bij = 0.
Contracting now (17) with ¢?* and using (16), we obtain
(18) (n—3)R™ ,, B,js+ R ;Bppis+ R ;B + R,y B, = 0,

whence
('”’ - 3) (R",mBrij’s - Rrs,j Bn‘m.s) + Rrs,j Bn‘ms - -Rr.a,mBriis = 0.

Hence
(19) Rrs,mBn'js = R",jBrims
which, together with (18), implies
1
(20) Rn.mBrijs = ‘]:'-Rrj,mBri‘

But the last equation yields
(21) -Rrj'm-Bri = Rn‘,m rj, .R,.a’.m,.Bra = 0-
Contracting now (15) with ¢ and substituting (21), we obtain (10).

Equation (11) follows immediately from (10) and (20).

LEMMA 3. Let M be a conformally symmeiric manifold of constant
scalar curvature, dim M > 4. If B is a parallel generalized curvature tensor
on M, then the relation
(22) (n—1)R,, , By + By p B'ji + By By, p — Bij By, p +

1
+ m 8(gjmBix,p — Jim Bij,p) = 0
holds.

Proof. Substituting (11) into (15), we get

(23) (’”’ - 2) er,p Brijk + Rri,p Brmjk + Rrj,p rimk + Rrk,p Brijm +
1

1
+——— SGjm By p— nd—m) S8gimPBij p+ Bix Bjm p — Bij Bimp = 0.

n(l—mn)
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Computing the cyclic sum of (23) with respect to m,j, and %, and
using (3), we obtain

R, o B+ Ry s B g+ By p By = 0

which, together with (23), leads to (22). The lemma is proved.

LeMMA 4. Let M be a conformally symmetric manifold of constant
scalar curvature, dim M > 4. If the Ricci tensor of a parallel generalized
curvature tensor on M is of the form

1
B = - S i
i " Gijy
then the relation
1
(24) er,p Brijk = —=~ (ginkm,p —gikij,p)

n(n—1)
holds.
Proof. As a consequence of (22) we get

—(n—1)R,, By, — R, By — B{kij,m +ByRypm—
1

- n(l—n) 8(9ip Bix,m — Grp Big,m) = 0
which, together with (22) and (16), yields

(25) -Rri,p B'mjk - Rri,mB’pjk +

1

+ @ =) S OmBas+ 0o Bym— 9im By 99 Bim) = 0.

But (25), in view of (16), implies
(26) R B — B i B'pp+

1
+ n(l—mn) S(9smBit,p + Gio Big,m — Jiom Big,0 — 930 Birm) = 0.

Replacing in (26) p by m, ¢+ by p, and m by ¢, we obtain
(27) er,p Brijk - -Rri,pBrmjk +

1
+ n(l _ ,n) 8 (gff‘Rpk,m + gkapj,i — ki Rp m gijpk.i) = 0.

Adding now (27) and (22) and using (16), we get

MRy » B iji + Bix Bjm o — Bij By, p + "

1
S(gﬂRpk,m - gkiRpj,m) = 0.
(1—n)

4 — Colloquium Mathematicum XXXIX.1
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The last relation, together with By;= (1/n)8gy; and (16), leads imme-
diately to (24). Thus the lemma is proved.

LeMMA 5. Let M be a conformally symmetric manifold of constant
scalar curvature, dim M > 4. If B s a parallel generalized curvature tensor
on M such that

1
Ty = By— ’;Sgij #0

at some point, then M ig locally symmetric or there exists a point e M
for which (24) s satisfied with R, , # 0.
Proof. Contracting (14) with ¢** and making use of (10), we get
1
(28) p 8(94Bim,p — JimBit,p + 9 Rim,p — Ijm B, p) +
+ Ry, p Bmj— Rim,p Bij+ By, p Byi — Bjm . By = 0.

A cyclic permutation of ¢, I, and j gives

1
(29) P 8(9yBim,p— 9im Bij,p + 953 Bimn, p — Gim By, ) +

+ le,p Bmi - le.p Bji + Rij,mel - Rim,p le =0

and, furthermore,

(30) - % 8(95 Bim,» — Jjm Bi,p + 9 Bim,p — Gim Bri ) —
—Ry; , By + Ry p By — Ry Bpy + By , By = 0.
Summing up (28)-(30), we obtain
T miljp = leRmi.p‘
But the last relation, in view of T,;; = T; and (16), yields
T,iRjyp, =TyRpyip = TyRppi = TpuBj i = Tpp Ry s
Hence
(31) T,:Ry, = TRy ;.

If now R,; , = 0 everywhere, then, in view of (13), M is locally sym-
metric. Otherwise, there exists a point ¢ of M such that at ¢ the condition
Ry, # 0 holds.

On the other hand, since T'; is parallel and non-zero at some point
by assumption, T,; is non-zero at every point of M. Therefore, there exists
a vector v’ such that the equation v"v*T,, — ¢ (¢ = +1) holds at g.
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Transvecting now (31) with ™+ and putting 4; =v'T,; and
8; = v Ry,, we find at ¢

(32) ‘Rﬂ,p == 8Ap Sjl‘

But it follows easily from (16) that v»"E,; , = S;;.
Therefore, transvecting (32) with v*, we get

(33) 8, = eA,Q,, where @, =1"8,.

Moreover, as a consequence of (33) we obtain @, = eQ4, (@ = v"Q,).
But the last result, together with (33) and (32), yields

(34) R, = DAA;A,, where D # 0.
Substituting now (34) into (31), we obtain easily
Amei—AiTmp = 07
whence T,,; = ed,, A; and, consequently, both equations (34) and
1
(35) Bmi = 7" ngi + eAmAi

hold at gq.
Substituting (34) and (35) into (22), we obtain

1
(36) (n—1)A4,A, B+ A A B+ p S(A;Angy— ArAngy) +

1
+———8(4;449m—A:;4;9km) = 0.

n(l—mn)
Suppose that 4, # 0 at ¢. Then (36) with ¢ = m = ¢ yields
, 1
A, By, = W__—l)‘s(Akgtj —A;94).

Putting now m =% in (36) and making use of the last relation,
we get

A B = wn—1) S(A,9:;;—A;9:x)

which, in view of (34), leads immediately to (24). The lemma is proved.

3. Proof of the Theorem. It follows easily from (2) and (9) that,
for a conformally symmetric manifold, condition (6) is satisfied and,
therefore, Theorem C works.

Since B is parallel on M by assumption, Theorem C yields B = B(1)
or the scalar curvature of M is constant. If B = B(1), the condition

(B —-B(1), B—B(1)) = 0 holds. Suppose, therefore, that R = const and
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n > 4. Then Lemmas 2-5 work. Hence M is locally symmetric or equa-
tion (24) with E,; , # 0 is satisfied at some point g.
Transvecting now (14) with B™7* and using (24), we get at ¢

(ByB)Ry ,+ 891 (94 Biem,p — ik Bim, ) Bk

n(n—1)
— G (95 B, p — 9 Bit, o) B™ + 930 (9n Rim,p — i Riom, ) B™* +
+ 951 (In Bim,p — 9ii Brm, ) B™ — @il Gien Rt p — Giei B, p) B™7* +
+ 912 (9 Brm,p — Iin Bim,p) B™ — g (95 Brip — GinBar,p) B™9k]—
— By, p B™ B+ Ry p Bimki Bonki+ Rt p Bimip ..

i i i
—ij,ij "™ Bypi + By, B ”mijih—Rmk,mej By = 0.

Applying (24) and (10) to the last equation and using the second
equation of (21), we obtain

2
(85>~ ) s =0,
whence
2 2
<B,B>_’n(T-1_)-S =0 at q.

On the other hand, since B is parallel on M,

2
B,B)— — 82 = st.
(B, B) n(n—1) con
Hence

2
<B,B>—-n(—n-_—1)'82=0 on M.

Our assertion follows now from the fact that

(B—B(1), B—B(1)> = (B, B>— Py 8.

The Theorem is proved.

COROLLARY 1. Let M be a conformally symmetric manifold of dimen-
sion n > 4. If B is a parallel generalized curvature tensor on M and its scalar
curvature vanishes, then M is locally symmetric or (B, B) = 0.

Remark 1. It follows easily from Lemma 1 that, on a conformally
symmetric manifold, Weyl’s conformal curvature tensor C is a parallel
generalized curvature tensor with §(C) = 0. Therefore, Theorem B is
an immediate consequence of Corollary 1.

As a consequence of Theorem B we have
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COROLLARY 2 (see [4], Theorem 2). Let M be a conformally symmetric
manifold with positive definite metric form, dim M > 4. Then M is locally
symmetric or M s conformally flat.

Since every conformally flat manifold of dimension 7 > 3 is con-

ormally symmetric, we get

COROLLARY 3. Let M be a conformally flat manifold with positive de-
finite metric form, dim M > 4. If M 4s not locally symmetric, then each
parallel generalized curvature tensor B on M satisfies B = B(1) and B(2)
= B(3) = 0.

Since scalar curvatures of B(2) as well as of B(3) are zero, Corollary 3
vields

COROLLARY 4. Let B be a generalized curvature tensor on a conformally
flat manifold with positive definite metric form, dim M > 4. If M is not
locally symmetric and B(2) is parallel on M, then

1
B(2) =0 and B;= —n—Sgij.

COROLLARY 5. Let B be a generalized curvature tensor on a conformally
flat manifold with positive definite metric form, dim M > 4. If M i3 not
locally symmetric and B(3) is parallel on M, then B(3) = 0.

Tanno obtained ([8], Theorem 2) the following remarkable result:

Let M be a Riemannian manifold with positive definite metric form.
If its Weyl’s conformal curvature tensor has the vanishing %k-th covariant
derivative, i.e., Cpyy,..., = 0 for some integer k > 1, then Cyyy,, = 0.

Using Tanno’s result and Corollary 2, we have

COROLLARY 6. Let M be a Riemannian manmifold with positive de-
finite metric form, dim M > 4. If its Weyl’s conformal curvature temsor C
satisfies Chyy,..., =0 for some integer k>1, then M is conformally
flat or locally symmetric. .

Remark 2. Suppose that a; # cg; (¢ = const) is symmetric and
parallel on a not locally symmetric conformally symmetric manifold M.
Then, as has been proved (see [6], p. 229), equation (31) holds. Therefore,

each point of M has a neighbourhood (see the proof of Lemma 5) in which
R, , can be expressed in the form

(37) Rjk,p = -DQijQp'

On the other hand, since M is not locally symmetric by assumption,

there exist a point ¢ and a neighbourhood U of ¢ such that in U the rela-
tion

1
(38) & = @’ g+ €Q:Q;
holds. Therefore, in U both equations (37) and (38) are satisfied.
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Since the parallel tensor a;—C,g;;—C,a; vanishes in U (see [6],
p. 231), Theorem 1 of [6] remains true without assuming the analyticity
of M.

Remark 3. Let M be a not locally symmetric conformally flat mani-
fold with positive definite metric form, dim M > 3. If a; is symmetric
and parallel on M, then a; is a multiple of g,;.

Otherwise, a; would be of form (38) in some neighbourhood U.
But (38) yields @"Q, = 0. Hence

r
Q;; = ‘;b' @ .Gy
a contradiction.

Added in proof. Recently, it has been proved that Corollary 2
as well as Corollary 6 are valid also for dimM =4 (A. Derdzinski
and W. Roter, On conformally symmetric manifolds with metrics of ind:i-
ces 0 and 1, Tensor, New Series, 31 (1977), p. 255-259).
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