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Introduction. The system of two equations
(1) U(r) = p—vU (1) — [v*(x; t)dx,
0

2 0 (%, 1) = Vo, (x, 1) = (v*(x, )+ U @) v(x, 1),

where p,v>0, xe[0, ], t >0, U: [0, o) = R, v: [0, n] x[0, o0) — R, with
boundary and initial conditions

U(0) = U,,

3
) v(x, 0) = @(x) for xe[0, ], v(0,t)=v(n,t)=0 for t >0

was introduced by Burgers in [1] and [2] as a simplified model of fluid
motion in order to explain some properties of turbulent flow.

One can interpret U as a velocity of “primary” motion of a viscous fluid
in a sloped channel, v as a velocity of “secondary” (turbulent) motion in the
direction perpendicular to the axis of the channel, and p as average constant
pressure. The physical meaning of the terms in (1), (2) can be found in [2].

Dlotko proved recently ([4]-[6]) the existence, uniqueness and
regularity of global solutions of the system (1){3) in several different
regularity classes. In particular, he proved that the regular solution
veC*!((0, m) x(0, ©)), continuous up to the boundary, exists for
@eCl[0, n] (the proof is based on the theory of solutions of non-linear
parabolic equations in Holder classes). He also showed, using energy
methods, that the “laminar” solution (U, v) = (p/v, 0) is globally stable for
pvt* < 1.

We can eliminate one of the two parameters p, v substituting U/v, v/v, vt
for U, v, t, respectively, if only v # 0. Writing, as before, U, v, t, we obtain
the following slightly simpler system:

4) U=c-U-z,
(5) v = vxx—(vz)x+ UU,
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where

c=ph? z(t)= }vz(x, t)dx.
0

If v=20, then (in the old variables)
(6) U =p—2z,
(7) v, = —(v?),+ Uv.

Stationary solutions. In the case of stationary solutions of (4), (5):
U = const, v = v(x), the equations under consideration are

(8) c=U+z,

) Dax— (") +Uv =0
with the conditions

(10) v(0) =v(n) =0.

It suffices to consider only (9), (10) with U = A as a parameter. We write (9)
in the form

(11) 0" —(v2) +Av = 0.

We can try to solve this equation by means of quadratures, e.g., by
using the Hopf-Cole substitution v = —(logy)’ (see [7] and [3]). We get

¥(x)
x= [ [(a—2ilogy)y*—a]~"2dy,

¥(0)
where a is an appropriate constant, chosen according to (10). However, it is
not easy to say anything about the solutions if they are written in the above
form. Note that Burgers has integrated (11) in another way but his
description of the properties of solutions is neither precise nor complete ([1],
[2], see also [8]).

We start out to investigate (11) studying the vector field associated with

(11): v =w, w = v(2w—1). This vector field has an (analytic) integral of the
form

(12) F(v,w, 1) = v2—[w+(4/2) log (1 —2w)].

The integral curves are described by the equation F (v, w, 1) = const, 4 fixed.
We can find a solution of (10), (11) only in the region w < 4/2 because for w
> A/2 any integral curve starting from v =0 will never reach v =0 once
more. It is easy to see that {(v, w): F(v, w, 1) =const, w < 4/2, A fixed} is
either the point (0, 0) or a closed curve symmetric with respect to the w-axis,
since F is a strictly increasing function along an arbitrary ray starting from
(0, 0). Thus the solution must consist of some parts, half or the whole,
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eventually taken several times, of an orbit of the vector field, parametrized so
that v(0) = v(n) = 0. In other words: if T is the period of this orbit, then we
can construct a solution of (10), (11) (with 2r/T—1 zeros in (0, n)) if and only
if t =(m—1/2) Tor r = mT for an integer m > 1. For any such solution v we
have the corresponding symmetric solution & which can be written in the
form

v(x) = —v(n—x),
_ . fo(x+m(2m)™?) for x < n(1-(2m)™1Y),
o) = v(x—n(1-2m)~ ")) for x > n(1—-(2m)™?),

respectively. Thus, the stationary solutions of Burgers’ equation always
appear in pairs.

One of the ways of solving our problem is to apply the bifurcation
theory. Equation (11) with condition (10) can be converted, by using the
Green function, into the operator equation in a Banach space:

(13) (I—AG)v+F (v) = 0.

The compact operators G and F in C{[0, n] are defined as follows:

Gu(x) = [G(x, y)v(y)dy,
(V]

F()(x) = [G(x, y)(v* () dy,
0

where G(x, y) determined as

(mr—y)x/n  for 0 < x

SXKysm,
(n—x)y/mn  for 0<y<x

<n

G(x, y)={

is the Green function for the operator —d?/dx? considered in [0, ] with
homogeneous boundary conditions. G is linear, F — non-linear, F(0) = 0;
moreover, F is differentiable and its Fréchet derivative is

DF(v)(h)(x) = 2 [G(x, y)(v(y) h(y)) dy,
0o

so DF(0) = 0. The only points (4, v) in R xCg[0, n] from which non-trivial
solutions of (13) can bifurcate are the points (4,, 0), where 4, =n? (n —
integer, n > 1) is the (simple) characteristic value of the operator G, ie., the
characteristic value of equation (13) linearized at v = 0 (see comments before
Theorem 3.3.1 in [9]). Theorem 7.5.2 in [10] (Krasnosel'ski’s theorem in a
new setting due to Crandall and Rabinowitz) assures that (4,, 0) are actually
the bifurcation points: (13) has non-trivial solutions in a suitably small
rectangle {(4, v): |A—4,] <9, ||v|| <e&}. This is the local result. The global
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theorem due to Rabinowitz (see [10]) states: if A, is a simple characteristic
value of G, then there is a maximal closed, connected set of points (4, v)
satisfying (13) which tends to infinity in R x C} [0, nt]. This set consists of two
distinct branches of solutions of (13) which meet only at (4,, 0).

Now we have the complete description of the stationary solutions of
Burgers’ equation. Pairs of branches consisting of solutions {(4, v,): 4 > n?},
{(4, D,): A > n?} bifurcate from the points (n?, 0) and tend to infinity without
intersections with the A-axis, except (n%, 0) or other branches. The non-trivial
solutions lying on the first bifurcating branch are stable (in the linearized
sense) near 4; = 1. The zero solution loses its stability when A increases and
crosses 1. Those results concerning stability of bifurcated solutions follow
from a theorem of Crandall and Rabinowitz (3.6 in [9]).

Monotonicity properties. We formulate now some additional properties
of the solutions of (11). Due to symmetry we may restrict ourselves to those
solutions for which v'(0) > 0.

THEOREM. For n* < A < p the solutions v, v, of (10), (11), which bifurcate
from (n?, 0) and remain on the n-th branch satisfy the following monotonicity
condition: |v,(x)| < |v,(x)| for any x.

Clearly, it suffices to show that v,(x) <v,(x) for xe(0, n/n).

We have immediately the following

CoRroLLARY. For A <y,

2
i

ey, A

vy, <z, =

w= )V

Z, = )

Q ey,

[=]

and therefore the number of the stationary solutions of (4), (5) for a given c,
c = A+z,, is equal to 2¢''* —1 for any integer c''? and to 2[c''*]+ 1 otherwise.

The proof of the Theorem is based on the following remarks:

(1) If A <p and v, v, are the solutions of (11) with maxv, = maxuv,,
then for x, y such that v,(x) =v,(y) >0 and sgnuv(x) =sgnv,(y) the
condition |v)(x)| < |v,(y)| is satisfied and the equality is possible only for
v =0.

This result is more visible on the phase plane: the orbit corresponding
to u contains in its interior the A-orbit (the same is true for maxv; < maxv,).

(i) If T,(A,4) and T_(A, A) are the least positive x’s such' that
v; (T4 (A, 4)) = maxv, = AY% v,(0) = 0, v, (T, (4, A+ T- (A4, 4)) = 0 (one can
interpret T, as time necessary for v to reach 42 and then to return to 0),
then .

(@) T, is a strictly decreasing function of A for A fixed,

(b) (T, +T-) is a strictly increasing function of A for 4 fixed.

Proof of the Theorem. It follows from (ii) that if A < u and v,, v,
are the solutions of the boundary value problem (10), (11), then maxuv,



BURGERS' EQUATION , 309

< maxv,. If v,(x) = v,(x) for xo€(0, n/n) and x, is either the least x with
this property before v, reaches its maximum or the greatest x with this
property after v, reaches its maximum, then v}(xo) = v,(xo) >0 or
v (x0) < v,(xo) < 0, respectively. These additional conditions may be satisfied
because v,(0) > v;(0) >0 and v, (n/n) <vi(n/n) <0 as we see from (i).
However, the inequalities obtained contradict the property of the phase
portrait described in (i): the equality v,(xo) = v,(xo) would imply |v}(x,)|
< Jop (xoll-

Now we prove the auxiliary facts (i) and (ii).

(i) If the orbits are described by the equations F(v;, w;, 1) = a; and
F(v,, w,, u) = a, (F is the integral (12)) and maxv; = maxv,, then

a,+(A/2)log A = a,+(u/2) log u
and
0 > vi —v; = (A/2)log(1—2w/A)—(u/2) log (1 —2w/p),

since the function Alog(1 —2w/4) of 4 is strictly increasing for w (0 # w < 4/2)
fixed.

(ii) Evidently,

T T g
v
T={l= [—,
) oV

so we express v’ as a function of v, 4, and A. Let F(v, w, ) =a be the
equation describing the orbit with maxv = A", ie,

v—a=w+(4/2log(A—2w), A=a+(4/2logA.

If we put w = At, then (v2— A)/A = h(t), where h(t) =t+2"'log(1—2¢). It is
obvious that for every y < 0 there exist a unique s = s(y) <0 and a unique
t = t(y) > 0 such that h(s) = h(t) = y; moreover, t < 1/2. Using the functions
t and s we can write '

4172

T, (4, )= | [At((v*—A)/A)] dv,
0

(14) 2
T (4, )= — | [As((v*—A)yA)] ‘dv
0

or, changing the variables,

0
T, (A, )= [ AV2[24(Ar/A))" " (r+ 1) V2 dr,

-1

o
T.(A, )= — _[ AYV2[22s(Ar/A]" Y (r+1)"V2dr.
-1
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In order to prove (a) it is sufficient to show that At(Ar/A) and — As(Ar/4)
are increasing functions of 4. We calculate

d_(ﬂ%’/_’l_) =t (Ar/A)—(Ar/A)t'(Ar/2)

=t—h()(1-(20"") = [1+((2)" ' —1)log(1 —21)]/2

(y=Ar/A=h(@), t'(y) = 1—(2t)~ '), which is positive for t > 0 and negative
for t <0 (apply the inequality log(l+x) <x with x = —1+(1-2n"1).
Case (b) 1s more complicated since T, increases but T_ decreases when
A increases, and therefore we should consider the expression AY2[t(Ar/A)~!
—5(Ar/A)~']. The derivative of this expression with respect to A is equal to

27V AT 73573 (s— ) [s2 2+ y (s + 12+ st — 25t2 — 2521)],

where s and r are taken at y = Ar/A. We proceed to show that the expression
in the square brackets is positive. We observe first that s < —t for + > 0 (this
follows from the inequality h(—t) > h(t)) and

M = s2+4t2+st—2st2—2s%t

=(1=-20[s(s+)+t3/[(1-2)] >0 for 0 <t < 1/2.

Thus we can consider s’t?M~'+y and we show that this expression
increases when ¢ increases (0 <t < 1/2) and remains positive since the limit is
zero when t tends to zero. We have

d(s’t* M~ 1+y) _

= —St2M ™2 (3s(s+2t)— 25 [(s+1)* + 2st] +

+2(3-20)/1 -21)},
since

dt ds ds(h(r) - 4

Z_1, PP =ts " (1-25)(1—-21)" .
If s+2t <0 and (s+8)*+2st >0, ie, for a = —t/s <min(1/2, 2—3'?) =
2—3Y2 then this derivative is obviously positive. We notice that the
expression in the brackets {-) is greater than

3s(s+2t)—4s?t+t2(3-20)/(1-21)
=s2(1-20"'[3(1 —a)* +2a(1 —)(5—a) s+ 8a2 s?],

where 0 <a = —t/s < 1. The discriminant 4a2(1—a)?(a>—10ax+1) of the
quadratic expression in brackets is negative for a > 5—24'/2, and therefore
this expression is positive. Our estimates exhaust all the cases since 5 —24'/2
< 2—3Y2 This completes the proof of (b) and the proof of the Theorem.
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Remark. If we notice that T, + T_ is a continuous function,

lim [T, (A, )+ T_ (A, A)] = nd~ 12
A—-0

(a general fact) and
lim T, (A, ) = ¢ > n/2

A-o
(by (14)), then we can easily obtain an alternative proof of the existence of
solutions of (10), (11).

The case v =0. At the end we will show that the behaviour of the
solutions of (1), (2) in the absence of viscosity (v =0, see (6), (7)) is quite
different from that for v > 0. Multiplying (7) by v and integrating on [0, r]
we obtain

/2 =Uz, where z(1) = [v*(x, t)dx.
0

This together with (6) gives U = p—z, z = 2Uz or U —2UU + 2pU = 0, which
is of the same type as equation (11). We can apply results concerning the
orbits of the vector field of (11) to see that U — oc when t — ¢ or (U, z) are
periodic functions. The first case, where U (t) = Uy + pt, v = 0, shows what is
possible in the absence of dissipation of energy: an unbounded increase of
energy as the result of the work of constant exterior forces. The second case
is not possible from the physical point of view.

We do not know whether the solution (U, v) of (6), (7) exists for all t > 0
and for arbitrary initial data nor whether it is unique (P 1315). The problem
is analogous to that for degenerated Burgers—Hopf equation ((7) with U = 0)
studied by Hopf [7]. The preceding result on the periodic evolution of (U, z)
(proved by the assumption that z is differentiable) and some numerical
experiments suggest that such a solution may be not regular.
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