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COMPACT HAUSDORFF SPACES WITH TWO OPEN SETS

BY

J. MIODUSZEWSKI (KATOWICE)

Schoenfeld and Gruenhage [5] have shown that if a compact metric
infinite space X has, up to a homeomorphism, only two open non-empty
subsets, then it is homeomorphic to the Cantor set. To show this they
have proved that

(1) X does not contain isolated points,

(2) X is totally disconnected.

The aim of this note is to discuss the compact Hausdorff infinite
spaces having, up to a homeomorphism, only two open non-empty subsets.
For the brevity, we shall say that these (infinite) spaces have two open sets.

We show that if X is a compact Hausdorff space with two open
sets, then

(3) X has the Souslin property hereditarily,

(4) X has a countable base around each closed (non-open) subset
still having properties (1) and (2).

A known space, called by some authors the double arrow, described
in Mémoire by Alexandroff and Urysohn, 1929, is an example of a compact
Hausdorff separable non-metrizable space with two open sets.

If the space X is not separable, then it is nowhere separable and we
show that

(5) X is a union of an increasing sequence of N; nowhere dense sepa-
rable closed subsets.

In consequence,

(6) X contains a dense subset of cardinality N,,

(7) X has cardinality of continuum.

Clearly, such a space cannot be constructed within ZFC, since its
existence contradicts the axioms of the theory ZFC +(2% > ¥,) + Martin’s
Axiom. However, if there exist homogeneous Souslin lines, then compact
Hausdorff non-separable spaces with two open sets can be constructed
in a similar way as in the separable case.

All compact Hausdorff spaces with two open sets which we have
known so far are ordered. Do there exist non-ordered ones? (P 1027)
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References to consistency problems concerning axioms of set theory
can be found in [2] and [1].

In the first two sections, X will denote a given compact Hausdorff
space with two open sets.

1. Spaces with two open sets, in general. One of these open sets
is compact, being homeomorphic to the whole space X. The second
one is non-compact, being homeomorphic to each of the subspaces X — {z}.
This follows from the fact that

(1) X does not have isolated points, X being infinite.

As in the metric case,

(2) X is totally disconnected.

In the proof of (2) by Schoenfeld and Gruenhage the metric is in-
volved but, as can be seen, the Hausdorff separation property is sufficient
to perform the proof. Since the subspaces X — {«} are all homeomorphic,
we infer easily that X is homogeneous.

1.1. If U is a non-compact open subset of X, then U = U,V U,V ...,
where U; are mutually disjoint, closed-open, and non-empty.

Proof. One can construct by induction a sequence U,, U,,... of
closed-open, non-empty, and mutually disjoint subsets of X. The union
U,vuU,uv ... is open and non-compact. If U is an arbitrary non-compact
open subset of X, then U is homeomorphic to that union.

1.2. CorOLLARY. If F 1is a closed mon-open subset of X, then there
exists a countable base of open subsets around F; in particular, X is first
countable.

Proof. The set X —F is open and non-compact, whence, by 1.1,
X—-F =U,vU,v...,
where U; are non-empty, closed-open, and mutually disjoint. The sets
Vi=X—(Uu Uyu... uT))

form a base around F'. In fact, if W is a neighbourhood of ¥, we may assume
that W is closed-open. Then U; — W for all but finitely many ¢, for other-
wise X —W would be a union of infinitely many mutually disjoint closed-
open sets, which would contradict the compactness of X —W.Thus V;, « W
for some <.

1.3. CoROLLARY. X has the Souslin property hereditarily.

Proof. Let D be an infinite discrete subspace of X. For each = from D
take an open subset U(x) of X such that DN U(x) = {x}. The open set
V = J{U(x): x € D} is non-compact, D being infinite. By 1.1, there
exist closed-open, non-empty, and mutually disjoint subsets V,, V,, ...
of X such that V = V,uV,u... It follows that D = V, and each DNV,
is finite in view of compactness of V;. Thus D is countable.
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Since each discrete subspace of X is at most countable, each subspace
of X has the Souslin property.

Having 1.1 in view, for each closed and non-open subset F of X fix
a countable base H(F) of closed-open neighbourhoods around F. For
each separable subset F of X fix a countable dense subset D(F) of F.
And let us fix a choice function % assigning to each non-empty subset A
of X a point k(4) in A.

2. The non-separable case. If X is not separable, then each non-empty
closed-open subset of X is not separable, being homeomorphic to X.
Since closed-open subsets form a base, each separable subspace of X is
nowhere dense.

2.1. If X is not separable, then
X = U{FG: a< wl}’

where F, are closed separable subsets of X such that F, is a nowhere dense
subset of F, provided a < f.

Proof. We construct the sets F, by induction. Let F, = . Let
F, =cl|J{Fs: p< a}if ais a limit ordinal. To construct the set F,,,
from the preceding ones, define A, to be the set of values of the choice
function h on sets V —F,, where V are in H ({z}) and x are points of D(F,),
and on sets X —W,uW,u ... UW, for each finite subfamily {W,, W, ...
.o.y W;} of the family | {H(Fj): f < a}. The set A, is countable, D(F,)
and a being countable. Let F,, , = F,uclA,.

Clearly, F, is separable if F';, f < q, is separable, and F, is a nowhere
dense subset of F, ,, since each z in D(F,) is a limit point of A,, and
80 is each other point of ¥,, D(F,) being dense in F, and F, being first
countable. Clearly, F, are closed by the construction.

The union 8 = |J {F,: a< w,} is a closed subset of X. In fact,
let # be an accumulation point of §. Take a countable base B of open
neighbourhoods of z (the existence is assured by 1.2). We have SNV # O
for V from B. This means that for each V from B there is an ap, ap < w,,
such that VnF,, # @. Let a, a < w,, be greater than each a,. We have
VNF, # @ for each V, F, containing each F, . Hence zeF,, F, being
closed. Thus = € 8.

We claim that 8§ = X. To show this suppose that there exists a point p
in X — 8. For each a take a closed-open neighbourhood V, of F,, being
@ member of H(F,), such that p ¢ V,. Itfollows that § = | {V.: a < w,}
and, in view of compactness of 8, a finite number of Vs, say Vo, Vo, ---

-oy Vs cover 8. We have Vo, UV,U... UV, # X, since the sets Va
do not contain p. Let a, a < w,, be greater than each of a,, az, ...y .
By the construction, there is a point of F, ,, and so a point of S, in the
set X — Vo, UV,u... UV, . Acontradiction with§ = ¥V, UV, uU... Y Vo
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2.2. COROLLARIES. 1. X contains a dense subset of cardinality N,.
2. The cardinality of X is that of continuum.

The first follows from the fact that X is a union of X, separable sub-
spaces. The second follows from the first, since each point of X is a limit
of a sequence of points from each arbitrarily given dense subset of X,
X being first countable.

The construction from 2.1 resembles constructions on Souslin lines
known since long (see the book by Devlin and Johnsbriten [1], p. 13,
as well as more recent papers, leading to estimations of cardinalities of
spaces, by Ponomarev [4], Pol [3], and Sapirovskil [6]).

The referee pointed out that for compact Hausdorff spaces X without
non-empty separable open subsets and having countable bases around
closed non-open subsets (our spaces X satisfy these conditions if they are
non-separable) the conclusion of our Theorem 2.1 follows from the exist-
ence of a dense subset of X having cardinality ¥, (the proof by transfi-
nite induction), and that the last property can be deduced from Theorem 1
or Corollary 1 of [6]. This is another way of obtaining our Theorem 2.1
from Corollary 1.2.

3. Examples. There is a general scheme for examples that we have
known so far.

3.1. LEMMA. If a compact ordered space X has the Souslin property,
and the closed-open intervals of X form a base and are all homeomorphic to X,
then compact open non-empty subsets of X are all homeomorphic to X, and
all non-compact open subsets of X are homeomorphic each to other.

Proof. Note first that if V is a non-compact open interval of X,
then in view of the Souslin property of X, V is a union of countably many
closed-open non-empty intervals mutually disjoint.

If U is an open subset of X, then U = U,V U,V ..., where U, are
maximal open intervals contained in U; this is assured by the Souslin
property. The intervals are disjoint if they are different.

In the case where U is compact, we have U = U,vU,v... U,
for some 7, and all U, are compact. Take an arbitrary decomposition of X
into » disjoint closed-open non-empty intervals, X = V,uV,u... UV,.
By the assumption, there is a homeomorphism from U; onto V; for each ¢
(all these intervals are homeomorphic to X). The union of these homeo-
morphisms is a homeomorphism between U and X.

In the case where U is non-compact, decompose each non-compact U,
into countably many closed-open non-empty intervals, according to the
remark made at the beginning of the proof. We have U = W,UW,U ...,
where W, are closed-open non-empty intervals mutually disjoint. Having
another non-compact open subset U’ of X and taking a decomposition
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U’ = W,UW,U ... as before, we get a homeomorphism between U and U’,
the union of homeomorphisms between W, and W;.

An ordered continuum is said to be (order) homogeneous if each two
its closed intervals which do not reduce to points are similar. If @ and b
are the first and the last elements, respectively, in an ordered continuum,
then it will be denoted by [a, b]. By [z, ¥], where a < z < y < b, we denote
closed intervals of [a, b]; the symbol (x, y] stands for an interval without
the end «. In the set {0, 1} which we consider in the sequel an order given
by 0 < 1 is assumed.

3.2. LEMMA. If [a, b] 18 an ordered homogeneous continuum having
the Souslin property, then the space

X = (a,b]x{0}u[a, d) x {1}

with topology givem by the lewicographical order is a compact Hausdorff
space with two open sets.

Proof. Clearly, X is compact. X has the Souslin property, since
[a, b] has. Compact non-empty intervals are all of the form

U = (=, y]x {0}u [z, y) x {1}.
Each homeomorphism from [a, b] onto [z, y] induces a homeomor-

phism from X onto U. These compact open intervals form a base of X.
By Lemma 3.1, X has only two open sets.

Example 1. Let [a, b] be a closed interval of the reals. The space
X = (a,b]x {0}U[a, b) x {1} (this space is called the double arrow) de-
fined as in Lemma 3.2 is a separable non-metrizable compact Hausdorff
space having, by Lemma 3.2, two open sets; the space is non-metrizable
containing copies, (a, b] X {0} and [a, b) X {1}, of Sorgenfrey (half-) lines.

Example 2. Let [a, b] be an ordered homogeneous continuum which
is not separable and which has the Souslin property. Such continua,
Souslin homogeneous continua, exist in the theory ZFC +Axiom of Con-
structibility (see [1], p. 40, where the existence of homogeneous Souslin
continua is proved even under much weaker assumption known as the

{-hypothesis). The space formed from [a, b] a8 in Lemma 3.2 is a compact
Hausdorff non-separable space with two open sets.

The problem to find all compact Hausdorff spaces with two open
sets seems to be open, even the problem to find all such spaces among
separable ones. (P 1028)
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