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ON THE DIMENSION OF REMAINDERS
IN EXTENSIONS OF PRODUCT SPACES

BY

J. M. AARTS (DELFT)

All spaces under discussion are metrizable.

1. Introduction. An extension Z of a space X is a space which contains
X as a dense subset. The remainder of an extension Z of X is the space Z\ X.

In this paper* we discuss the lower bounds for the dimension of
remainders of complete and compact extensions of products X x Y.

The results can be summarized as follows. If X is not complete (not
locally compact) and Y is o-compact, then the dimension of Y is a lower
bound for the dimension of the remainder of a complete extension (a com-
pactification) of X X Y. In case X is not complete, the following stronger
result can be obtained. The remainder of a complete extension of X X ¥
contains uncountable many pairwise disjoint copies of Y. In case X is
nowhere locally compact and of the second category no requirements have
to be imposed on Y to show that the dimension of Y is a lower bound
for the dimension of the remainder of a compact extension of X X Y.

Throughout, Bx(U) (or B(U) when no confusion is likely to arise)
denotes the boundary of U in X. The closure operator will be denoted
by an upper bar. The strong inductive dimension of X is denoted by dim X.
Complete means topologically complete.

2. Complete extensions. We have

THEOREM 1. Suppose X is mot complete and Y is o-compact. Suppose
Z 18 a complete extension of X X Y.

Then Z\(X X Y) contains uncountable many pairwise disjoint copies
of Y.

COROLLARY 1. Suppose X is not complete and Y is the union of a locally
countable collection of compact sets. Suppose Z is a complete extension of XX Y.

Then dimZ\(X x Y) > dimY.

* Research supported by the National Science Foundation Grants GP-6867
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Before we state the next corollary we first mention a few definitions.
A space is said to be weakly countable-dimensional if it is the union of
a countable collection of closed finite-dimensional subsets. A space is
called countable-dimensional if it is the union of a countable collection
of zero-dimensional subsets. We say that a space is weakly infinite-
dimensional if for every pair of countable closed collections {F;[¢ =1, 2,...}
and {G;|1 =1,2,...} with F;,nG; =0 (i =1,2,...) there exists an
open collection {V,|7 =1, 2, ...} such that F; =« V, =« X\G,; and n{B(V))|
1=1,2,...} =0@. If a space is not weakly infinite-dimensional, then
it is strongly infinite-dimensional.

COROLLARY 2. Suppose X is not complete and Y is compact. Suppose
Z 18 a complete extension of X X Y.

If Z\(Xx XY) is 1. weakly infinite-dimensional, 2. countable-dimen-
stonal, or 3. weakly countable-dimensional, then Y is 1. weakly infinite-
dimensional, 2. countable-dimensional, or 3. weakly countable-dimensional.

As a consequence of Corollary 2 we infer that the remainder in any
compactification of the product of the rationals and the Hilbert cube
is strongly infinite-dimensional. This answers a question posed by Lelek
in [6]. As shown in example 2, the condition that X is not complete cannot
be deleted.

We need the following lemma (for a proof see [5], p. 15):

LEMMA 1. Suppose Y is o-compact. Let p denote the natural projection
of X X Y onto X. If F is an F,-subset of X X Y, then p(F) is an F -subset
of X.

Proof of Theorem 1. Let X and Y be complete extensions of
X and Y respectively. Assume X X Y is embedded in X x Y in the na-
tural way. According to the extension theorem of Lavrentiev ([4], p. 335),
the identity map of X X Y can be extended to a homeomorphism of
a Gs-subset of the complete extension Z onto a G4-subset G of Xx Y.
It is sufficient to show that G\ (X X Y) contains uncountable many paa.r
wise disjoint copies of Y. Let F = (X X Y \@G. F is an F,-subset of Xx7Y.
It follows that F N (it'x Y) is an F,-subset of X x Y. By the lemma
above, H = p(F N X X Y)), where P denotes the natural projection of
Xx Y onto X, is an F,subset of X. Let Q = X\(X U H). Because
X = X\(Q U H) and X is not complete, @ is uncountable. @ X Y <=
c G\(X x Y) and the theorem follows.

Proof of Corollary 1. Let Y = (J{C,|aeAd}, where {C,|acA} is
locally countable and each C, is compact. '

In case Y is finite-dimensional, by the sum theorem of dimension
theory ([7], Theorem II. 1), for at least one C, we have dim(C, = dim Y.
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By Theorem 1, for any complete extension Z of X X Y the remainder
contains a copy of C,. It follows that dimZ\(X X Y) > dimC, = dim Y.

In case Y is infinite-dimensional, for each integer n there is a C,
with dim.C, > n. Otherwise X is finite-dimensional by the sum theorem.

By Theorem 1 it follows that dim Z\(X X Y) > » for each integer
n. Hence Z\(X X Y) is infinite-dimensional.

Remark. Corollary 1 has already been proved in [1] section 2.4.
In the proof a weaker version of Theorem 1 is used which, however, is
not stated explicitely as a theorem.

Proof of Corollary 2. From Theorem 1 it follows that the remainder
Z\(X X Y) contains a copy of Y which is closed in the remainder since
Y is compact. Because properties 1, 2 and 3 are invariant for the taking
of closed subsets, the corollary follows.

3. Compactifications. In this section we discuss the lower bounds
for the dimension of remainders of compactifications of products X x Y.
In discussing compactifications we may assume that all spaces are separable.
Observe that every compactification is a complete extension. Thus
Theorem 1 and Corollaries 1 and 2 hold also for compactifications.

Now, we relax the condition on X in Corollary 1 and obtain a similar
result for compactifications:

THEOREM 2. Suppose X is not locally compact and Y is the union of
a locally countable collection of compact sets. Suppose Z is a compactification
of XX Y. Then dim Z\(X X Y) > dimY.

Theorem 2 is a generalization of [6], Theorem. 1. However, the proof
as outlined in [6] is not clear to the author. Here we present a totally
different proof which also enables us to proof the following theorem:

THEOREM 3. Suppose X is nowhere locally compact and of the second
category. Suppose Z is a compactification of X X Y.
Then dimZ\(X X Y)> dim Y.

As.shown by examples below the results of Theorems 2 and 3 cannot
be strengthened to a result similar to that in Theorem 1.

For the proof of Theorems 2 and 3 we make use of the following
lemma:

LeEMMA 2. If a subset X of a space Y has dimension < n, then for every
pair of closed collections {F;|t =1,...,n+1} and {G|i =1,...,n+1}
of Y with F; N Q; = O there exists an opem collection {V;|i = 1, cey n41}
such that F; = V, =« X\G; and [ {B(Vy)|i =1,...,n+1}] n X =0.

Moreover, if X is closed, then the converse holds.

Proof. If X = Y, the lemma is a version of [7], corollary of theorem
II. 8. It is obvious that the converse holds for closed subsets X of Y.

Suppose dimX < n. Let {F;|t =1,...,n+1} and {G;|¢t =1,...,
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..., n+1} be closed collections with F; N G; = @. For each 7 open sets
U, and W, are selected such that F,c U,, G;= W, and U, "W, = 0.
Because dim X < n, in the subspace X there exists an open collection
{D;|]s =1,...,n41} such that U, " X < D,c X\W, and N{Bx(D,)|
t=1,...,n4+1} = 3. For each ¢ neither of the sets F, U D, and G, v
U (X\ D) contains a cluster point of the other. By the heriditary normality
of Y (cf. [7], p. 3) there exist open sets V, such that ¥, u D, < V,; and
V:n(G; u(X\D)) =0. By(V,) =V \V, and By(V;) n X c Bx(D).
The lemma follows.

Proof of Theorems2 and 3. Suppose dim Y > n and dim Z\ (X x Y}
< n. We shall derive a contradiction. By the lemma, in Y there exist
closed collections {F;|¢ =1,...,n}and {G;|t =1,...,n}wWithF;, nG;, =G
such that for each open collection {V;|¢ =1,...,n} with F; <« V, c X\G;
we have M {Byp(Vy)|t =1,...,n} #0. Let Ly = XX F; and K; = X X
XGit=1,...,n Let A = J{L; n K;|7 =1,...,n}, where the upper
bar denotes the closure in Z. A is a closed subset of Z and Z\ 4 is locally
compact. Moreover, in Z\A the sets L, and K, have disjoint closures
which will be denoted by L; and K, respectively, ¢ = 1, ..., n. Because
dim Z\(4 v X X Y) < n, in the space Z\ A there exists an open collection
{Vili =1,...,n} such that L;c V,<c (Z\NA\K; and [N {Bxru(V)|
t=1,...,n}] N[Z\(4A VXXY)]=0.TIt follows that D = (" {Bzx (V)|
t=1,...,n}c XX Y. Let mx and =, denote the natural projections
of X X Y onto X and Y respectively. Let » = nmy|D. Clearly = is con-
tinuous. First, we show that = maps D onto X. For every point zeX the
map zy restricted to nx'(x) = Y, is a homeomorphism between Y, and Y.
Observe that ny (L, N Y,) = F;, ny(K; " Y,) =G, and {#my(V; N Y,)|
¢t =1,...,n}is an open collection in Y with F;, c =y (V, N Y,) =« Y\G,.

It follows that N{Byp(ny(V; N Y )4 =1,...,n} #0 and D nY,
# . This shows that » maps D onto X.

Now in order to prove Theorem 2 we proceed as follows. We first
assume that Y is compact. Then = is also closed, because =y is closed
and = is the restriction of #x to a closed subset. Moreover, the inverse
image of each point under = is compact. D is a closed subset of the locally
compact set Z\ A. It follows that =m(D) = X is locally compact which
is a contradiction. From this result Theorem 2 can be deduced in the
same way as Corollary 1 is obtained from Theorem 1.

Theorem 3 is proved as follows. D is locally compact and therefore
o-compact. Because = is continuous, X = =(D) is o-compact. However,
this contradicts the fact that X is nowhere locally compact and of the
second category.

Example 1. By means of examples it is shown that the results
of Theorems 2 and 3 cannot be strengthened to a result similar to that
in Theorem 1.
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For each integer k > 1, let 4, be the topological union of k intervals
of length 1/2%. B, is obtained by identifying k endpoints —one out of each
interval—to one point p,. The space Y is obtained as follows. Take the
topological union of the unit interval [0,1] and the B,,k =1,2,...
The point p, is identified with 1/ke[0, 1]. Let = denote the identification
map. The resulting space Y is compact and for each k > 2 has exactly
one point of order k- 2.

Now let X be the closed unit interval [0,1] with the points 1/n,
n=1,2,..., deleted.

The space X X ¥ can be compactified by [0,1]x Y. Let Z be the
quotient space of [0,1]X Y which is obtained by identifying each of
the sets

n

{l} X [n[O, %] VLU {=(By) | E=n}]|

toapointc,, n=1,2, ...; Zis a compactification of X X ¥ and Z\ (X X Y)
contains no copy of Y as is easily seen. X and Y satisfy the conditions
of Theorem 2.

A small modification of this example shows that Theorem 3 cannot
be strengthened. Let X be the closed unit interval [0, 1] with the rational
points p/q deleted. We assume p and ¢ have no common divisors except 1.
Let Z be the quotient space of [0, 1] X Y which is obtained by identifying
each of the sets

P 1
{—} X [W[O, —] U [U{m(By) [ k> q}]]
q q i
to a point ¢, ,. (It is assumed that 0 is expressed as 0/1.) Then Z is a com-
pactification of X X Y the remainder of which contains no copy of Y.
X satisfies the conditions of Theorem 3.

Example 2. Here we mention an example which shows that in
Corollary 2 the condition that X is not complete cannot be deleted. This
example has been introduced for other purposes by Anderson in [3],
lemma 5.2. ,

Let [, be the separable Hilbert space. [, = {(%;);-,| 2; is a real number
and X} < oo}. Consider the infinite-dimensional ellipsoid E = {(z;)e
el,| 2i*2; <1} and let B = {(,)el,| 2’4} =1 and] only finitely many
x; are NON-zero}.

E is homeomorphic to the Hilbert cube I* and E\ B is homeomorphic
to the countable infinite product of real lines s. Observe that B is weakly
infinite-dimensional. Since s is known to be homeomorphic to sx I®
(see [2]), this shows that the product of s and a compact strongly infinite-
dimensional space has a compactification with a weakly infinite-dimensional
remainder.
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