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ON DIFFERENTIABILITY OF PEANO TYPE FUNCTIONS*
BY

MICHAL MORAYNE (WROCLAW)

In this paper we investigate the properties of Peano functions (on the
real line R), i.e. vector functions F = (f), f5): R — R? such that F(R) = R2

Let AcR, f: AR and E < A. We say that f fulfils the Banach
condition (T;) on E (fe T,(E)) if

Alyef(E): If7'((y) nEl >Ro}) =0

where 4 denotes the Lebesgue measure. We also write fe VB(E) if f is of
bounded variation on E, and feVBG(E) if E is the sum of ‘a countable
sequence of sets E,, where fe VB(E,) for each n ([2], Chap. VII, p. 221).

Let M,, M, be any sets and let S =< M, x M,. Assume that ue M, and
veM,. We put

S,=1{yeM;: (u,y)eS} and S"={xeM,: (x,v)eS}.
Throughout this paper we consider only finite derivatives of functions.

THEOREM 1. The existence of a Peano function F = (f,, f) such that for
each xe R there exists at least one of the derivatives f{(x), f5(x) is equivalent
to the Continuum Hypothesis.

Proof. We use the following theorem of Sierpinski:

Let M, M, be sets of power c¢. The existence of sets S,, S, S M, x M,
such that S, US, = M, x M, and that the sets (S,),, (S,)* are countable for
each ue M, and ve M, is equivalent to the Continuum Hypothesis (CH) ([3],
Chap. I, Proposition P,, p. 9). '

Assume CH and take sets S,, S, of Sierpinski’s theorem applied to M,
== Mz = R.

* Ce travail fut mal composé dans le fascicule 48.2. Il fut reproduit sur une feuille non
numérotée et insérée dans le fascicule 49.1. A présent nous le reproduisons encore une fois en
I'intégrant entiérement au corps de ce fascicule. La Rédaction

9 — Colloquium Mathematicum LIIL.1



130 M. MORAYNE

Let ¢(x) = x sin x for xeR. For u, veR let
o '{uh (-, —1>={t},13,...}, @ '({thn 1, )= {s],s3, ...},
(Sl)u = {ylll’ Y2, }’ (sz)v = {x'{9 X3, }

For te(—o0, 1) we put f,(t) = @(t). If te {1, o), then t = s, for some
real v and natural n. Let us put f,(s;}) = xj.

Similarly, for te(—1, 0) we put f,(t)=¢(t) and f,(t) = yy for
the (—o0, —=1).

One can check that the function F = (f), f,;) is the one looked for.

Conversely, assume now that F(R) = R? and D, uD, = R, where D,
= {teR: f/(t) exists} (i =1, 2). The functions f;, f, satisfy the Banach
condition (73) on the sets D,, D,, respectively (see [2], Chap. VII, Theorem
10.1, p. 234, and Chap. IX, p. 279(*)). Hence the sets

Ni= {yeﬁ(Di): I.ﬁ_l({y})nDJ)NO}o i=19 2;
have Lebesgue measure zero. Therefore, the sets M; = R— N, (i = 1, 2) are of
power ¢. Let S;=F(D)n(M, xM,), i=1,2. The sets S,, S,, M, M,
satisfy the conditions of Sierpinski’s theorem, and hence the proof of the
theorem is complete.

We shall see further that a function F = (fj, f;) defined in Theorem 1
does not exist when we assume that at least one of the coordinate functions
fi or f, is Lebesgue measurable. This will follow from Theorem 3. First we
prove the following

THEOREM 2. Let F =(f,, f;), where f,e T,(R) and f, is an arbitrary
function. Let F(R) be a Lebesgue measurable subset of R%. Then ,(F (R)) =0,
where 1, is the Lebesgue measure on the plane R>.

Proof. There exist two disjoint sets A and B such that AUB =R,
A(B) =0, and |f;” ' ({¥})| < N, for each ye A. According to Fubini’s theorem
we can write

42 (F(R)) = 4, (F(R) n (4 x R))
= [A(F(R) n({x} xR))dA(x)
A

= y(fz (fi ' ({x})di(x) =0

because |f;(f; ' ({x}))] <N, for each xeA.

COROLLARY. Let 1€ VBG(R) and let f, be continuous on R. Assume
that F =(f,,f;). Then A,(F(R))=0.

(*) In [2] this fact is shown for intervals, but it is true for any subset of R.
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Proof. Let {E,: n=1,2,...} be a family of sets such that

U E.=R and f,eVB(E,) for each n.
n=1
Let us consider any fixed set E,. The function f | E, can be extended to a
function g,e VB(R) ([2], Chap. VII, Lemma 4.1, p. 221). Let F, = (g,,/2).
Since F, is a Borel function, the set F,(R) is analytic ([1], Chap. III, Section
38, Proposition 5, p. 457). Therefore, the set F,(R) is Lebesgue measurable
([1], Chap. III, Section 39, p. 482). Hence, by Theorem 2, we have 4, (F,(R))
= 0, which implies A, (F,(E,)) = 4,(F(E,) = 0. Finally, 1,(F(R)) = 0.
THEOREM 3. Let f;: R—- R and f,: R— R. Assume that
(1) the function f, is Lebesgue measurable;
(i1) for each xe R there exists at least one of the derivatives f|(x), f;(x);

(iii) F(R) is a Lebesgue measurable subset of R?, where F = (f,, f3).
Then A,(F(R)) =0.

Proof. Let us put D, = {teR: f/(t) exists}, i =1, 2. There exists a
sequence (K,l2, of closed subsets of R such that A(R-K,) < 1/n and
fi | K, is continuous for n=1, 2, ... Let us consider the set D, N K, for a
certain fixed n. The function f, is differentiable on D,NK,, and so
f,eVBG(D,nK,) ([2), Chap. VII, Theorem 10.1, p. 234). Let {A;: j
=1,2,...) be a family of sets such that

D,nK,= ) A; and f,eVB(4) for j=1,2,...
j=1 :

For every j there-exists an extension of f; | 4; to a function g,e VB(R). Of
course, there also exists an extension of f, | K, to a continuous function & on
R. For the vector function H =(h,g,) we have A,(H(R))=0 (see the
Corollary), whence 1,(H(A4))=0. This implies i,(F(D,nK,)=0 and,
consequently ‘

2, (F(Dy Q K,)) = 0.

The function f; is differentiable on the set D,— () K, and A(D,- U K,)
=1 n=1

= 0, whence
A(f (D, - ..Q, K,) =0

([2], Chap. VII, Theorem 6.5, p. 227). Consequently, we obtain

1a(F(Ds- U KJ) =0
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and, finally, 4,(F(D,)) = 0. Thus F(Dy) is Lebesgue measurable. Let us put
@)= f,(t) for teD, and ¢(t) =0 for te R—D,. The function ¢ satisfies the
Banach condition (T5) on R. Let G = (¢, f5). The sets. G(D,) = F(D,) and
G(R—-D,) are Lebesgue measurable, and from Theorem 2 we obtain
A2(G(R)) = 0. Hence 4,(F(D,))= 0. Finally, 4,(F(R))=0.

We _fofmulate now other versions of Theorems 2 and 3, omitting the
assumption of Lebesgue measurability of F(R). To prove these theorems we
should apply the same methods as those used in the proofs of Theorems 2
and 3. ’

Tueorem 2'. Let F =(f,,f;), where fieT,(R) and f, is an arbitrary
function. Then 25(F (R)) = 0, where X, denotes the inner Lebesgue measure on
the plane R2.

THEOREM 3. Let f,: R— R, f,: R— R, and F =(f,, f;). Assume that
the function f, is Lebesgue measurable and that for each xe R there exists at
least one of the derivatives f{(x), f;(x): Then A3(F(R)) =0.

Finally, we pose the following problem:

ProBLEM (P 1276). Does there exist a function F =(f;,f5): I = I x1,
where I = (0, 1), such that F(I) =1 xI and for each xel there exists at
least one of the derivatives fi(x), f5(x) (as in Theorem 1 one can prove that
from the existence of F CH would follow)?

Let us mention that if we put above an open or half-open interval
(instead of I) as the domain of F, then the existence of F is, as in Theorem 1,
equivalent to CH.

The author is very grateful to Professor C. Ryll-Nardzewski for his
advice and suggestions. In particular, Professor C. Ryll-Nardzewski proposed
to investigate functions as in Theorem 1.
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