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1. Introduction. The well-known Banach’s Fixed-Point Theorem [2]
states that each contraction mapping f of a complete metric space (X, d)
into itself has a unique fixed point. This result has been generalized in
many ways by various authors, see Belluce and Kirk [1], Dass and Gupta
[3], Edelstein [4], Sehgal [6], Guseman [5], and others. Sehgal investi-
gated mappings having a contractive iterate at each point of the space
and proved the following theorem:

Let (X, d) be a complete metric space and let f: X — X be a con-
tinuous mapping satisfying the following condition: there exists a k< 1
such that, for each ¢ X, there is an integer n(2) > 1 such that, for all y ¢ X,

(1) a(f* (@), " (y)) < kd(z, y).
Then f has a unique fixed point » and f"(x,) - » for each x,e X.

Guseman [b] generalized this result for mappings which are not
necessarily continuous but satisfy (1) on a subset of the space.

_In this paper* we have taken a somewhat different type of condition
instead of (1) and have shown the existence of the unique fixed point
following the lines of arguments of Sehgal [6]. In the last section we gen-
eralize our result to mappings which are not necessarily continuous but
satisfy a rather weaker condition.

2. We prove the following

THEOREM 1. Let f be a continuous mapping of a complete metric space
(X, @) into itself satisfying the following condition: for each we X, there
i8 am integer n(x) > 1 such that, for all ye X,

(2) & (" (@), " (y)) < ad (@, [ (y)) + B (y, [ (x)),
where a> 0, >0 and a+ < 3.
Then f has a unique fived point u and f"(z,) — u for each zye X.

* The authors are thankful to C.S.I.R. (India) for providing research fellowships.
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In order to prove this theorem, we first prove the following

LeMMA. If f: X — X i3 a mapping satisfying the conditions of Theorem 1,
then

(3) r(@) = sgpd(f"(w), )

8 finite for each mwe X.
Proof. Let 2¢ X and let

8(2) = max{d(f*(@),s): ¢ =1,2,...,n(x)}.

If n is a positive integer, then there exists an integer ¢ = 0 such that
n(z) < n<< (t+1)n(x) for n > n(cx) and
d(f*(@), o) < d(f*Af*" (@), f* (@)} + () (), 2)
< ad(f*~" (@), " (@) + pd (@, f* () + (" (), @),

i.e.,
3(/(@), 0) < T 8 @), 3)+ 5 o o)

1+a a(l+4+a) a(l-{-a)](s

<[ e A
1+a a a \3

<t ) v ew
l14+a 1 l14a

1 1—aa-p O T 1@

for all n > 0.

Hence (3) is finite.
Proof of Theorem 1. Let @#ye X be arbitrary. Let m, = n(x,),
@, = f"°(x,) and, successively, m; = n(z,), By = f""(wi). We show that
{w,} is a convergent sequence. We have
(@1, @3) = A(f" (@), f°F ™ ()
< ad(@y, @) + ad(2y, @s) + .Bd(fml (@) 5 mo)+ﬂd("”o’ @,),
i.e.,

a+tf b — B

1—a’ l1—a’

d(2,, ®,) < ad(zy, ,) + bd(f (o) 5 a’o)y where ¢ =

Again,

@@y, @) = d(f (1), [ (1)
< ad (@4, B5) + ad (@, @) + pd (@1, f 2 (2y)) + fd (2, @),
i.e.,
d(zs, @;) < ad(®,, ,) +bd(w1afmz(w1))-
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However,

d(y, 2 (@2) = A" (20), " °f "2 (00))
. < ad(@o, @) + ad (1, £ (@1)) + Ba (f"* (@o) , ) + B (@0, 1),
1.e.,
d(a"nfmz(ml)) < ad(xy, #,) +bd(fmz(¢o)7 a’o)y

so that
d(z5, #;) < a(a+b)d(xy, x,) +a'bd(fml(wo)7 mo)+b2d(fm2(wo), -’Bo) .
Similarly,

d (@3, 3,) < a(a+b)*d(w,, 2,) + ab(a+b)d (" (), Tg) +
+ ab* A (" (@,), @o) +B2A(f"(2y), o)
and, in general,
A2y, Tpyr) < a(a+b)"'d(w,, 2,) +ab(a+ )"~ 2d(f (o), @) +
+ab?(a+b)"2d(f (@), To) + -
+abn—1d(fmn—l () 5 -’170) + bnd‘fmn(a’o)y mo)
<[a(a+b)*'+ab(a+b)" 2+ ... +ab™  +b"]r(x,).
Now, for k > n,

A(@,, ) < BBy Bppy) + oo +A(@0p_yy )
<a[(a+bd)" ' +b(a+b)" 2+ ... +b" (a4 b)+b" ] x
X[1+(a+b)+(a+by+ ... +(a+by"]r(z,)+
+ab*[14(a+b)+(a+b)}+ ... +(a+b)¥ " r(z,) +
+ab* 1+ (a+bd)+(a+b)}P+ ... +(a+b)¥ "3 r(w,) +
+ ... +ab* 3 [1 4 (a+b)]7(w,) + ab*2r(z,) +
+b”[1+b+b2+ . 05 ()

<[ Zb'a—l-b)" - ’][ Ty +b)]f(wo)+

ab® n+1
+—m r(z °)+T+b) (@) + ... +
abk—3 . bk—z "
+ m (o) +a 7 (%) + 1—b (%) >0

as n, k > oo,
showing thereby that {x,} is a Cauchy sequence.

6 — Colloquium Mathematicum XXXIV.2
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Let x, - ue¢ X. We show that f(u) = u. If f(u) 5 u, then there exists
a pair of disjoint closed neighbourhoods M and N such that Ue M, f(u)e N,
and

(4) 6 = inf{d(s,y): ve M,ye N} > 0.

Since f is continuous, #,¢ M and f(x,)e N for all n sufficiently large.
Now,

A(f(@n)s @) = A(F"" 7 f(@na), £ (@)
< ad (f(®n_1), @) + i (w1, f(w,))
< ad(f(,-,), wn—l) +ad(®,_,, v,) + pd(®,_,, @,) +
+Bd (wm f(wn))7

i.e.,

(£, ) < T A1 (0ams)y 3+ Aonsy 3) <

1-p
ﬂ—la_l_ﬂ
<(155) atrie0 59+ (125) 1L dwo a0+

a \"?a+p
+(1"“ﬂ) 1-8 d(®y, @)+ ... +

a a+ﬁ atp
1— ﬁ 1— ﬂ n—27 wn—l)+ _—1—[3

4+

d(wn—u ‘vn) _>0
as n — oo,

contradicting (4). Hence f(u
To prove uniqueness, assume that there exists ve X, v # u, such
that f(v) = v. Then

d(u, v) = d(f™(u), f*®(v))
< ad(u, v) + ad(v, () + pd (v, w) + pd (u, ) (u))
= (a+p)d(u, v).

Hence % = .
Finally, we show that f"(wx,) — u. Let

8" = max{d(f*(2,), u): 8 =0,1,2,..., (n(u)—1)}.

If n is a sufficiently large integer, then n = rn(u)+g¢q, 0 < ¢ < n(u),
r > 0, and

B(F"(@o), 4) = &(F™*(@y), 9 (u)
ad(f(r 1)n(u)+q ’M\—l—ﬁd ,fn(wo)
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ie.,

d(f™(20), u) <3{— (- ) u) <

) a(f(@o), ¥) < (——) &*.

(113 B

Since n — oo implies r — oo, we have
a(f"(w), ) >0 as n — oco.
This establishes the theorem completely.

3. In this section, we generalize Theorem 1 for mappings which.
are not continuous but satisfy (2) on a subset of the space.

THEOREM 2. Let f be a mapping of a complete metric space (X, @) into -
itself. Suppose there exists B = X such that

(i) f(B) = B,
(ii) for each ye B, there is an inleger n(y) = 1 with

a(f" (@), " (y)) < ed(w, " (y))+ iy, [V ()
for all e B, a>0, >0, a4+ < %,

(iii) for some wye B, Cl{f"(@,): n=>1} < B, where Cl denotes the -
closure.

Then there is a unique ue B such that f(u) = u and f*(y,) = u for -
each yoe B. Furthermore, if

d(f (@), 4 (w)) < ad(z, " (u)) + pd (u, f*) (@) for all we X,
then u is unique in X and f*(®,) — u for each wye X.

In order to prove this theorem we first give the following
Remark. Let f be a mapping of a metric space (X, d) into itself.

Let B =« X with f(B) = B. Suppose there exists a ue< B and a positive
integer n(u) with
(5) (" (@), 4 () < ad(e, 9 () + pd(u, [ (x))
for all #e B, a>0, >0, a+p< }.
Further, if f*(4) = u, then u is the unique fixed point of f in B, and
f*(y,) — » for each y,¢ B, for (5) reduces to
a(f~ (), f*(w)) < ad(z, u) + Ba (" (u), "™ (@),

i.e.,

a(f"® (), " (w)) < d(x, u).

ﬂ
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It now follows from the lemma proved by Guseman [5] that there
is a unique ue B satisfying f(#) = v and f*(y,) - » for each y,¢ B.

Proof of Theorem 2. Let ye B. By the Lemma of Section 2, it
follows easily that

r(y) = supd(f*(y), y)
n

is finite. For ®,¢ B as taken in (iii), let mo, = n(w,), #, = f °(x,) and,
successively, m; = n(;), £;.;, = m‘(mi).

As in Section 2, we have, by usual calculations,

A(Bpy Bpyy) < [@(a40)""+ab(a+b)" 2+ ... +ab™ '+ b"]r(w,)

and, for k> n,
d(z,,x,) >0 as n,k — oo,

showing thereby that {,} is a Cauchy sequence. Using completeness
of X and (iii), we have #, — we B. Thus there is an integer n(«) > 1 such

that

a(f"™(y), " (w) < ad(y, " (w)) + pd(u, **(y)) for each ye B.
Now,
a(u, " (u)) < d(u, 3,) + (@, [ (@,))+ 3 (@,), 4 (w))
< d(u, @)+ d(w,, " (2,)) + ad (2, , [ () + pd(u, ** (,))
< d(u, ,) + (@, " (@,)) + ad(u, ,) +
+ ad (u, f** (w)) + B (u, z,) + B (v, [ (a,)),

ie.,
1
afu, 0w) < P g0, 01 23 G, progay).
However,
(., " (@) = @(f " (@), £ (@,20)
< ad‘wn—nf'“u)('%z))+ﬂd(fn(u)(wn—l)7wn)
< ad(®y -y, @,) + ad (@, 4O (x,)) +
+ﬁd(a;n_1,f"‘"’(wn_l))-}—ﬂd(m 1y %),
i.e.,

d(mn’fn(u)(‘”n)) < ad(@,_y, @ )+bd(wn—1,f”(u)(‘vn-1))<
< ad(@,_,, ¥,) + abd (@, _,, @, ;) +ab’d(®,_3, B, o)+ ... +
+0"d(,, "™ (o)) >0 as n — oo,

so that
a(f"(u),u) >0 as n - oo.
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Hence ™ (u) = u.
It follows from the remark made earlier that there is a unique ue¢ B
satisfying f(u) = » and f"(y,) -  for each y,¢ B.

The last assertion of the theorem follows as a consequence of the
discussion made above.
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