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GENERALIZED P,- AND P, LATTICES OF ORDER o*

BY

W. ZAREBSKI (WARSZAWA)

In 1963, Traczyk [7] introduced the notion of a P, lattice. Epstein
and Horn [1] investigated the theory of P,lattices in detail and used
this concept in searching for some new important generalizations of Post
algebras of finite order. They discovered P,- and P,-lattices in this way.

On the other hand, the notion of generalized Post algebras of order w*
was introduced by Rasiowa [4]. In the previous paper by Traczyk and the
author [8], generalized P,lattices of order w* have been examined. In
particular, some conditions for a P,-lattice to be a Heyting algebra or
a B-algebra (definitions are in Section 1) have been found. The present
paper deals with generalized P,- and P,-lattices of order w™, i.e. P,-lattices
being Heyting algebras or partial B-algebras.

1. Preliminaries. Let A be a distributive lattice which is bounded,
that is, it has the least element 0 and the greatest element 1; zUy and ay
denote the join and the meet, respectively, of two elements x,y € A.
The interval {z € 4: x < 2 < y} i8 denoted by [z, y]. The center B(A4) of A
i8 the Boolean sublattice of all complemented elements of A4 ; the comple-
ment of an element b € B(4) is denoted by b.

The greatest element z e A (2 € B(A)) such that zz <y, if it exists,
is denoted by # — y (¢ = y, respectively). In particular,  — 0 is denoted
by z*,and1 = by !z. Ifx — y (v = y, respectively) exists for any z, y € 4,
then A is called a Heyting algebra (a B-algebra). An element x is dense in
a Heyting algebra if z* = 0. For the properties of Heyting algebras,
see [5]; in particular, the following property will frequently be used:

if an infinite join | ) a, existsin a Heyting algebra A and a € A, then | J agq,
teT teT
exists and (see [5], I, 11.2)

(1.1) al)a, = aq.

teT teT

A B-algebra is called a P-algebra provided that the identity
(@ =yu(y o) =1
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or, equivalently,
(1.2) z => (xVyY) = (2 =>2)U(z =>9)
ig satisfied in it (see [2] for the definition and properties of P-algebras).
Let A be a bounded distributive lattice with center B. A (countable)
chain
0 =6<e6<...<6,<6,,<...<¢, =1

is called a chain base for A if for every element x € A there exists a de-
scending sequence z, > ¥, > ... > @; > ... in B such that

(1.3) z = ;6.
i=1

Then (1.3) is called a monotonic representation of x. The lattice A
is called a P,-lattice of order w™ if it has a chain base (see [8]).

2. P,-lattices of order w*.
Definition 2.1. A P;-lattice (A, (¢;)o<ci<ny Of order w™ is a Py-lattice A

with a distingunished chain base (¢;)o<;<. Such that A is a Heyting algebra
and ¢, >¢; =¢; for 1 =0,1,2,... It follows that ¢; - ¢; = ¢, for j> 1.

o0
LevmA 2.1. If o = | @,6, 18 a monolonic representation of x in
k=1

a Pi-lattice <A, (€;)<icoyy then
T Ve = (@ —€)—> ¢ for i =0,1,...
Proof. By Lemma 3.1 (i) of [8] and the definition of a P,;-lattice,
z—>e = fjl [z V(e —>e)] = kéﬂ (T, Ve) =T, Ve,
Therefore,
(®@—>e)—>6; =%, =€ = T;,,9¢

(see [1], Lemma 2.6, or [5] for the computational properties of the
operation — ).

THEOREM 2.1 (see [1], Theorem 3.4). Let {4, (¢)o<icn) be a P;-
lattice. Then, for each © = 0,1, ..., ¢, 18 the smallest dense element in

the interval [e;, 1]. Thus (6;)o<i<. 8 the unique chain such that (A, (€)ocico>
is a Py-lattice of order w*.

[oe]
Proof. Let us assume that r = | 7, ¢, (2 monotonic representation)
k=1

is densein [¢;, 1],i.e. z>¢; and » — ¢; = ¢;. We have to show thatx>e¢,,,.
Indeed, as z>e¢;,, we may assume that z, =... = x; = 1. Moreover,
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x;,,Ve;= 1 by Lemma 2.1. By Theorem 2.1 of [8], we obtain

oo ‘00
z = () (2Ve_,) = (B er_1) =€,
k=1 k=142

Note. The property of the chain base in P,-lattices mentioned in
Theorem 2.1 is analogous to the corresponding property of “the chain
of the smallest dense elements” in Stone algebras of order » (see [3] for
Stone algebras, and [1] for connections with P,-lattices of order »). An
application of our Lemma 2.1 and Theorem 2.1 of [8] yields the following
representation of an element x in a P;-lattice:

r = ‘F,]o [(x—e;) > ¢].

Observe that y, = (x—>¢;)—¢; €[¢;,1], and if y* denotes y — ¢,
then y;™ = y;. Compare with the representation

n—1
x =() %, where z;c[e,1] and 2} = ¢,,
t1=0

in a Stone algebra of order n [3].

3. P,-lattices of order w™.

Definition 3.1. A P,-lattice (4, (¢ )ycicoy Of order w™* is called
a P,-lattice of order w* if e;= x exists for every zed (1 =1,2,...).
Then we write

(3.1) Di(x) =¢;, > fori=1,2,...

LemMMmA 3.1. The following conditions are equivalent for a P,-lattice
{4, (&;)ocicay With center B:

(i) an infinite meet ﬁ‘B’D,(m) exists in B for every x € A;
(ii) 4 s a B-algeb'r:z;1
(iii) 4 48 a P-algebra.
Proof. The equivalence of (i) and (ii) follows from Lemma 3.2 (i)
of [8] and from the fact that y = 2 = !(y — 2) for y, 2 € A. The equivalence
of (ii) and (iii) was proved in [8], Theorem 3.1 (i).

[+ o]
Definition 3.2. # = | ;¢ i8 said to be the highest monotonic
i=1
representation of x provided that &; > y; for any monotonic representation

= U Y6

i=1
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THEOREM 3.1. Let (A, (6;)o<i<oy e a Py-latltice with center B. Then
(i) every x € A has the highest monotonic representation

z = |J D;(x)e;
im1

with the following properties (i,j7 =1,2,...):
(i) D;(xvy) = D;(x)VD;(y);
(iii) D;(wy) = D;(2)D;(y);
(iv) D;(b) = b for b e B;
(v) Dz —y) = (Dl (%) - D1(?/)) e (Di(-’”) - Di(?/))?
(vi) Dy(a*) = (D,(2))* = Dy(@);
(vii) Di(w)U(Di(w))* =1;
(viii) D;(e¢;) = 1 for ¢ < j, and D,(¢;) = le; for i > j;
Proof. (i) was proved in [8], Theorem 3.2, under the assumption
that A is a B-algebra; however, only the existence of ¢, = x was used.
(iii) follows immediately from (3.1) and from the properties of =

(see [1], Lemma 2.6).
iv) is verified directly by the definition of = and of a P,-lattice.

(
(vi) follows from (v) and (iv).

(vii) is obvious.

(viii) follows from the fact that z =y =!(z > y), and from the
definition of a P,-lattice.

(ix) is a consequence of (iv).

It remains to show (ii) and (v).

(ii) Let # = | #;¢; and y = Uy, ¢, be monotonic representations.

By Lemma 3.2 (ii) of {8], we obtain
(3.2) D;(x) =¢ =>ax = (B [z;U(e; = €;_1)],
ji=1

and analogously for ¥y and vy = | (2, VYy,)e, instead of x. Applying
twice the dual of (1.1) (B — Boolean algebra), we obtain

D;(x)v Dy(y) =jD(B) [z, VY V(e = ¢_1)V(e; = e;_y)].
k=1
"But for j < k the expression under the meet sign is not less than
Z, VY (e; = ¢._,) = Di(xVYy)

by an analogue of (3.2) with 22Uy instead of z. Since the same applies to
j >k, we get
D;(x)V D;(y) = Di(2Vy).



Py,- AND Py-LATTICES 5

¢

The converse inequality is obvious. Note that if A is a B-algebra,
then (ii) follows immediately from Lemma 3.1 and (1.2).

(v) Since ¢; = (x - y) = x¢; =y (easy to verify), using [6], p. 203,
and Lemma 3.2 (i) of [8] we obtain

Dz —>y) =ax¢; >y = (jL;)le(w)e,-) =

= [Di(x)u(e; =¥)] = ﬂl D; (x)V D; (y)].
J=1 )=
But D;(x)uD;(y) = D;(x) - D;(y) (see [1], Lemma 2.6 (iii), or [5],
I, 12.4).
For applications of P,-lattices of finite order (see references in [1]),
a so-called disjoint representation is of great importance. Here we give
the following

Definition 3.3. A disjoint representation is a representation of the
form

xr = U Cie"
I<i<o

(written | c;¢;Uc, in the sequel), where c¢;eB and ¢;¢; = 0 for i # j,

=1

1<i<o l<j<o.

THEOREM 3.2. Let (A, (6)<ico) be @ Pg-latlice with center B, such
that A is a B-algebra. Then every element x € A has the disjoint represen-
tation

(3.3) T = G C;(x)e; V0, (x),

where .

(3.4) C;(x) = D;(x)D;,(x) for i =1,2,...,
and

Co(®) ='o =) (B)Di(m)

=1

(see Lemma 3.1). Moreover, the following equality holds:

(3.5) Dy(@) = U P0;(2)UC, (@)
Jo=1
Proof. Let us write, for simplicity, ¢; = C;(#) and d;= D;(=)
(¢ — fixed). Obviously, ¢;¢; <« for 1<¢< w. Let 2z€ A, and c;e; <z for
1<¢ < w. In order to prove (3.3), we have only to show that = < =.
By an easy calculation based on (3.4), we obtain

diei<zud,—6‘- =sz,-+18i = een =sz,8, fOI' allj)l.



6 W. ZAREBSKI

Therefore, using Theorem 3.1, we have

and
d;(e; >2)<d; forj>1
Hence
- 00
d;(e; = 2) <jﬂ.(3)dj =ec, =l¢, < 2,
=1
and

Dix) =d; <!20(e; =>2) =120D;(2) =D;(2) for¢=1,2,...

Thus z < 2, and (3.3) is proved. The proof of (3.5) is analogous and
will be omitted.

4. Obtaining P,-lattices from P, -lattices. Epstein and Horn (see [1],
Theorems 3.3 and 4.4) have proved that if a P,-lattice of order n is a Heyting
algebra, then it has a chain base (h;)y<;<n_; Such that {4, (A)ecicn_1)
is a P;-lattice of order n. If, moreover, A is a B-algebra, then the resulting
P,-lattice is a P,-lattice. In this section, imposing rather strong conditions
on a P, lattice of order o*, we construct a cham base (h;)o<i<. Such
that {4, (h;)ocico » 18 & P,-lattice.

Throughout this section we assume that A is a P,-lattice with a chain
base (€;)o<i<w) Such that

(A) A is a o-complete lattice.

(B) The center B of A is a o-regular sublattice of A.

(C) A is a Heyting algebra and a B-algebra.

LeEMMA 4.1. Under assumptions (A), (B), and (C), if
= | b;e;,, where byeB (i =1,2,...)
t=1

(not necessarily a monotonic representation), then x has a monotonic repre-
sentation

z = \Jwxe, where z; = b, 1 =1,2,...).
k=i

i=1

Proof. Applying (1.1), we obtain
b"e.i < iL‘iei = (U bk)e,i = U bk6i< U bkck < &x
. k=1 k=1 k=1
Thus

o0 o0
f=1 i=1
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LEMMA 4.2. Let n be an integer, n > 0. Under assumpiions (A), (B),
and (C), there exists a chain base (f;)i<i<. Such that

(4:.1) f'-"—"c’- fO’ri=0,1,2, ...,’n’
(4.2) fn+1 _>fn =.fn'

If x € A has a (not necessarily monotonic) representation
(4.3) z = U e,

i=1

then there exists a (not necessarily monotonic) representation

(4.4) T = LJI?/iﬂ
such that
(4.5) Yy, =, fori=1,2,...,n—-1,
and
k k
(46) L{y,f,) Z;6; fO’r k =1,2,...
i= i=1

Proof. Let f; =¢; for ¢ =0,1,2,...,n, let f,,, have a monotonic
representation

(4.7) Jat1 = L;)l(e'—l = €n) €,

and let f; =f,,+1ue,-'f0r t=n+2,n+3,...
By Lemma 3.3 (ii) of [8] we have
e —~¢, =¢,J(e =>e¢,) fork,n=0,1,...

Therefore, .

[lex = €n)V(erss = €)](ex > €,) = [(6 = €,)U (1 —> €,)][e V(e = €,)]

< enU(Gk_H = Gn) - ek+1 —>6n.

Applying this, one can prove the inequality

k
(4.8) M [(ei—y =e€,)U(e; ~>e,)]<e,—e, fork=1,2,...

i=1
by induction over k. By (4.7), Lemma 3.1 (i) of [8], (4.8), and Lem-
ma 3.1 (i) of [8] again, we obtain

Jari > € = [(e;-, = )V (e; — ¢e,)]

i=1

[o 0] [o¢]
SN (ep—>e)=(Ue)—>e =16 =e,.
k=1 k=1
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Since the converse inequality is obvious, (4.2) is proved.
Now, the following equality can be shown:

(4.9) file,ul(e; =>e,)] =€ for i=n+1.
It is verified by a substitution f; =f,,.,Ue; where f, ., is given
by (4.7), by an application of (1.1) and by an easy observation that
e; < e, VUle, =e,)

(since e;(e; = e,) < €,).
Let € A have representation (4.3). Set

x; fort=1,2,...,n—1,
(4.10) ¥ =1 U 7 for ¢+ =n,
j=n

xz;(e; =>e,) fori=mn4+1, n4+2,...

Then inequality (4.6) is obvious for k¥ < », and it is easily obtained
from (4.9) for & > n. On the other hand, we have y,f; < xforallt =1, 2, ...
(apply (1.1) for ¢ = n» and (4.9) for ¢« > m). The last observation together
with (4.6) yields (4.4). The fact that (f;)o<;<., 18 @ chain base follows
now from Lemma 4.1.

THEOREM 4.3. Under assumptions (A), (B), and (C), there exists a chain
base (h;)o<i<co for A such that h;, ., —h;, =h; (¢ =0,1,2,...). Thus
A4, (h)ogic<oy 18 a Py-lattice.

Proof. Let e¢;, =e¢;. By induction we construct the sequence
E,, E,, E,,... of chain bases,

Ek == (e‘i,k)OS‘iQO) fOI‘ k = 0’ 1, 2, cee

Namely, E,,, is obtained by an application of Lemma 4.2 to the
chain base E,, where the integer n = k. At the same time, for given

o]

= J®,6,,
i1

we obtain the sequence of representations

00

z = J% 6
i=1

of x in E, (with the properties as in Lemma 4.2). We have, by (4.1),

€i = €41 = €40 =
and, by (4.5),

Tiivr = Ly ip9 = oo
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Set h; =¢;;,and 2; = x;;,, forv = 1, 2, ... It follows easily from (4.2)
that b, , = h; = h;. By (4.6), we have

i 1 1
Uk = U602 U @6,
im1 i i=1

i=1

On the other hand, 2;h;, = @;;,,6;;,, <. Thus
(4-11) U Z,h1 = .
=1

In view of Lemma 4.1, the proof is complete.

Remark. The last application of Lemma 4.1 is, in fact, superfluous.
Namely, using (4.10) and calculating effectively «;,, ;,, ... and, finally,
®; ;. = #;, we obtain the following formula:

(o0
1=
Thus 2, > 2, > ... irrespective of the initial representation

€T = U wi,o ei-
5. Post algebras of order w™.

THEOREM 5.1. Let (A, (6;)oci<ny b€ a Py-lattice of order w*. Then the
following properties are equivalent:

(i) each element x € A has a unique monotonic representation;
(i) D;(e;) = O for j < i;
(iii) 'e; =0 for i =0,1,2,...;
(iv) €., =€, =0 for i =0,1,2,... -
Proof. Obviously, (i) implies (ii), and (ii) is equivalent to (iii) (The-
orem 3.1 (viii)); (iv) is a particular case of (ii); (iv) implies (i) (see [6],
Lemma 1.3).

Definition 5.2. A P,-lattice is called a generalized Post algebra of
order o™ if it satisfies (i)-(iv) of Theorem 5.1.
It is easy to see that this definition is equivalent to the definition of [4].

The author would like to express his thanks to Professor T. Traczyk
for his assistance in the preparation of this paper.
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