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FACTORS OF A FOURIER SERIES
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1.1. Definition. Let 1 = A(w) be a differentiable and monotonic
Increasing function of w in (K, o), K being a positive constant, and let
M) tend to infinity with w. Let }a, be a given infinite series, and let

= 2{1‘(w)—,1(n)}'a,,, r>0.

n<w

The series ) a, is said to be summable |R, A, r|, r >0, if the integral

H {l(w }’

where A is a finite positive number, is convergent (cf. [5] and [6]). Now,
for r >0 and m < 0w < m+1,

ife x
[{A(E:;;] {;( ((;')H D, (@) = 2wy~ i(m)a,.

n<o
Hence ) a, is summable |R, 4, r|, r >0, if

A ()
f {A(w }r+1

Summability |R, 4, 0|, by definition, is the same as absolute conver-
gence. '

’

{l(w —A(m)} " A(n)a,

1.2. Let f(t) be a periodic function with period 2= and integrable
(L) over (—m, x). Without any loss of generality, the constant term in
the Fourier series of f(t) can be taken to be zero, so that

(1.2.1) f(t) ~Z (a,cosnt 4 b,sinnt) = 2 A, (?)
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’a,nd
(1.2.2) f ft)dt =

Here and elsewhere log,» means loglogn; and k is a suitable constant
as required by the hypotheses of the theorem. Throughout the present
paper we use the following notation:

¢ = H{f(@+8)+f(@—1)};
6(w,t) 2 exp [(logn)?](log,n) ' cosnt;

I<n<o

n(w,t) 2 exp [(logn)?](log,n)*~'n~'sinnt;

Isn<o

t
g(w,1) = [ (logy(k/u)™*0(w, u)du;

h(w,t) = [ (logy(ku))~0(w, u)du;
t

t
1
2.) = iy | G=wrpdn (> 0);

Dy (t) = @(t);
D,(t) = I'(a+1)t7°D,(t) (a>=0).

Concerning the absolute Riesz summability factors of a Fourier
series, Mohanty and Misra [4] proved:

If &,(t) is of bounded variation in (0, w), then the series E‘An/logfn
is summable |R, exp[(logw)?], 1|, where 4 = 1+1/a and 0 <2a <1

The author [1] studied the summability of the series fA'n [(logn)%,
¢ >0, whenever @,(t) is of bounded variation in (0, x). ’

1.3. The object of the present paper is to prove the following

THEOREM. If ¢(t)(log,(k/t) ) , €1, 18 of bounded variation in (0, w),
then the series

2.01 (logyn)*~* 4, (x)
3

18 summable
|R, exp[(logw)‘], 1|
for any positive A.
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1.4. For the proof of our theorem, we require the following inequalities

(cf. [1]-[3]):
(1.4.1) 0(w,t) = 0{

wexp [(log w)?](log,w)*~* }

(log )~
" 1 exp[(logw)“](log,»)* ™'\
(1.4.2) Ké{ln exp [(logn)?](log,n)* ! = 0{ (logw)™ }’
(1.4.3) (o, 1) = 0{exp[(logw)’](log,w) 1w 't7};
' _ [ wtexp[(logw)?](log, )" (log, (k/t)) "] .
144)  g(o,t) = 0{ Toge)™? },

’

(1.4.5) g, 1) = 0{exp[(logw)d](logzw)e_l(lo‘gz(k/t))—.}

(log )~
(1.4.6) h(w,t) = 0{exp[(logw)?](log,w)* 'w~1t 1},
Proof of (1.4.1). Let m—1 < w < m. Then

0(w,t) = Zexp [(logn)?](log,n)° ' cosnt.

n=3
Hence

16(w, )] < D exp[(logn)*](logyn)*".
3

Now, we have

D exp[(logn)*](log,n)* < [ exp[(logx)*](log,a)* dw+
8. 3

+ exp [(logm)*](logym)*~*

[+)]

_ fo(log,0) ™! r exp[(logz)'](logx)’*
_0{ (log w)*~* ,f @ d-m}+

+ O {exp [(log w)*](logy* ")}

—0 { o (log, )"~ exp [(logw)"]}.
(log )~

L)

Hence

6, 1) — 0{w(logzw)“‘eXP[(logw)“]}'

(logw)*~*
Proof of (1.4.2). Let m—1 < w < m. We have

2 n~(log,n) " 'exp[(logn)’]< (log,w)*~* Z n~'exp[(logn)?]
3<n<o 3Ign<o
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and

2 n~lexp[(logn)?] < f z~'exp[(logz)?]dx + m~ exp[(logm)?]

Isn<o

- 1
= f a~'exp [(logx)*1(logz)! ' ——5= dw+m~'exp [(logm)“]
3

(log)
_ o[explog2) 11" Jf [ expl(loga)] - y
- 0[ (log)*~" ]3 +0{3f x (log ) d”’} +0{w exp[(log ») ]}
_ 0{ exp [(logw)“]}
(logw)*~* §°
Hence
-1 4 e—1 exp [(logw)?](log, w)*~?
2 ™ expllogm) " (ogam)™! = o xplloge) Uogre 2|

Proof of (1.4.3). By Abel’s lemma, we have, for m —1 < w < m,

e—1,—1

n(w,t) = Z exp[(logn)?](log,n) ~'n"'sinnt
3<h<o

= 0 {exp[(log w)?](log,w)*'w 't 1}.

Proof of (1.4.4). We have, by (1.4.1),

‘
g(w,t) f(log2 (kju))~*0(w, u)du

w 1 41(log, w)*?
- o{ f (1oga (1))~ 221 (‘;f::))},(_f’g ©) du}

_o wtexp[(logw)"](logzw *~* (log, (K ft))
B (log )"~
Proof of (1.4.5). Applying second mean-value theorem, we have,
by (1.4.2),

t -
g(w,1) = (logy(k/t)™* [ 0(w, wdu (0< <)
¢

0{(toga(k/n)=* 3} expl(logn)*](logyn)~*n""}

Isn<o

o {exp[(logw) 1(log; ) =" (log, (k/t)) }

(log w)*~?
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Proof of (1.4.6). Using the second mean-value theorem, we have,

by (1.4.3),

h{w,t) = (1og2(k/n))-‘f0(w, wdu (< E<T)
&

= — (log,(k/m)) " n (o, &)
= 0 {exp[(logw)*](log, ) 0~'¢7}.

1.5. For the proof of our theorem, we require the following lemmas:
LEMMA 1. If the Fourier series of the even function (log,|kft|))™* ¢ > 1,

defined outside (—m, ) by periodicity, be >a,cosnt, then

D e, (log,n)* ™" < oo.

Proof. The technique of proof is due originally to Mohanty [3]. Let

(log, |(k[8)))~* ~ 2 a,,CO8 7l.
We have

a, = % of (logs(k[t))"*cosntdt (n>1).

Integrating by parts, we obtain

%2 sinnt
Ty = ——— f (log, (/1) ~*~* (log (K /¢))~* at
0
26 1/n T
- 2(f )
nT
0 1/n
2
= ———(L+1)
Now, since |sinnt| < nf, we have
o 'sin'nt
I, = f (1oga (k1) log (k) * —

0

l/n

= 0{ (logan)~*"(logn)™! f [sinné] dt}

t

= 0{(logyn)™"~"(logn)~"}
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and
r sinnt
I, = f (1oga 1)~ (log (k1) * == at
i/n
7
) 1
=0 {n(longn,)“"l(log'n,)‘1 fsmntdtl} (? <9< 'n:)
1/n
— 0{(log,n)~*~(logn)™"}..
Thus

la,| = O{n~*(logyn)~*"*(logn)~"}.
Hence the result of the lemma.
LeEMMA 2. The integral

%j Aw“(logw)""lexp[—(logw)"]’ Z exp[(logn)?](logyn) ~'a,| do

I<n<o

i8 comvergent, or, what is the same thing, D a,(log,n)"", where a, is defined
as in Lemma 1, is summable |R, exp[(logw)“], 1].

Proof. The series D'a,(log,n)*"', as can be seen by Lemma 1, is
absolutely convergent. Hence, by the first theorem of consistency for
absolute Riesz summability, the result follows.

1.6. Proof of the theorem. We have

3

A,(x) = —i—f«p(t)cosnt dt

0

t
2 n
~ —_;[tp(t) (log, (k /) f (logz(k/u))‘ﬁcosnudu]o—
T vt
2
—;fd{tp(t) (logz(k/t))"'}f(logz(k/u))"‘cosnudu

2 k9
= () (loga(k/m) 0y — — [ a{p(®) loga(k/0)}
0

¢
X f(logz(k/u))““cosnudu.

0

The series > (log,n)*"'4,(z) is summable |R, exp[(logw)‘], 1] if
3

I = [ do~(logw)*exp[—(logw)'] X
A

X i Z exp[(logn)?](log,n) ' 4, (x)|do < oo.

I<n<w
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Substituting the value of 4,(x) as obtained above, we have

I < |p(n)(logy(k/m))*

[ 4o~ (logw)*~'exp[ — (logw)*] x
A

x | ' expl(logn)*](log,n) " a,|de +

+ [|a{p(t) (loge(k/1))}| [ Aw*(logw)~ exp[ — (logw)*1g(w, t)dw.
0 A

In view of Lemma 2, the first term on the right-hand side of this
inequality is finite. And since, by hypothesis,

[ |a{g(®) (loga(k/1)}| < oo,
it is enough to show that
J = [ o7}(logw)* " exp[ ~(logw)*]lg(e, t) dw = O(1),
A

uniformly for 0 <t < .
Writing v = (log(k/t))**“~%, we have

Kt (k) 00

J=f=f+f + [ =di+de+ds
A| A k/t

(kityr

Now, by (1.4.4), we obtain

kit

J, =.0{fw“(logw‘)"“exp[—(logw)"]><

4

y wtexp [(1ogw)"](logzju)‘"‘(logg(k/t))"”dw}
(logw)?~*
kit

=0{(logz(k/t))“l(logz(k/t))“t ,! dw}

= 0{(log,(k/t))™} = O(1).

Using (1.4.5), we have
(kit)z
J, = 0{ f o Ylogw)? texp[ — (logw)?] X
Kt

exp[(logw)*](log,w)** (log, (k/t))~* d }
X 4-1 @
(logw)
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(klt)z
=0{(log2(k/t))‘° [ (logzw)“lw_ldw}

kit
(kit)r
< O |(loga(k/t))~*{logs((k/t) o))" [ ™ dw]
k/t
= O|(log, (¥ /t)~*{log, ((k/t)z)}**log7]
= O [(log.(k/t))*~* {log.((k/t)7)}*!| = O(1).

We now proceed to show that J; = O(1).
We have |g(w, )| < |g(w, m)|+ |h(w, )]
Therefore

o0

Js< [ oY (logw)*~'exp[ — (logw)*]lg(w, m)|dw+
(k/t)x

+ [ o' (logw)*exp[ — (logw)*]|h(w, )| do.
(kit)r

Now, by virtue of Lemma 2, the first term on the right-hand side
of this inequality is evidently O(1).
By (1.4.6), we have
Jy < O0(1)+
o0

+O{ fw“(logw)d“lexp[—(logw)d]exp[(logw)"](logzw)“lw"‘t“}

(kfeyx
=]

=0(1)+0{t-1 f w“z(logw)"‘l(logzw)"_ldw}
(ki)

[ (logw)*~(logyw)*™* 1 }
= dw

w wz—c

= 0(1)4—0{1;“l

(k[i)x

=0(@1)+0 [t_ {log((k/t)z)}*~* {log,((k/t)7)}*~ ]

{(k[)T}" {(kt)r}' "
{log ((%/t) <)}~ {log, ((% /t)r)}“l]

T

=0(1)+0[

=0(1)+0(1) = 0(1),

where ¢ is arbitrary, and such that 0 < ¢ < 1.
Thus the theorem has been completely proved.

The author is grateful to the referee whose suggestions improved
the presentation of the paper.
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